Math, asked by brain2874, 10 months ago

Water comes out of a pipe at a speed of 5 m per second. If the radius of the pipe is
8 cm, find the volume of water (in liters) that can be discharged by the pipe in 5
minutes. (Take pi = 3.14).​

Answers

Answered by Anonymous
7

\sf\red{\underline{\underline{Answer:}}}

\sf{3014400 \ litres \ of \ water \ can \ be \ discharged}

\sf{in \ 5 \ minutes \ through \ the \ pipe.}

\sf\orange{Given:}

\sf{For \ cylindrical \ pipe,}

\sf{\implies{Radius (r)=8 \ cm=0.08 \ m}}

\sf{\implies{Speed \ of \ water=5 \ m \ s^{-1}}}

\sf{\implies{Time(t)=5 \ minutes=300 \ seconds}}

\sf\pink{To \ find:}

\sf{The \ volume \ of \ water \ discharged.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{Distance=Time\times \ Speed}}

\sf{\therefore{Distance=300\times5}}

\sf{\therefore{Distance=1500 \ m}}

\sf{But, \ here \ distance=height \ of \ cylindrical \ pipe.}

\sf{\therefore{Height \ of \ cylindrical \ pipe=1500 \ m}}

\boxed{\sf{Volume \ of \ cylinder=\pi\times \ r^{2}\times \ h}}

\sf{\therefore{Volume \ of \ cylindrical \ pipe=\pi\times0.08^{2}\times1500}}

\sf{\therefore{Volume \ of \ cylindrical \ pipe=3.14\times64\times15}}

\sf{\therefore{Volume \ of \ cylindrical \ pipe=3014.4 \ m^{3}}}

\sf{\therefore{The \ volume \ of \ water \ discharged=3014.4 \ m^{3}}}

\sf{But, 1 \ m^{3}=1000 \ litres.}

\sf{\therefore{The \ volume \ of \ water \ discharged=3014.4\times1000 \ litres}}

\sf{\therefore{The \ volume \ of \ water \ discharged=3014400 \ litres}}

\sf\purple{\tt{\therefore{3014400 \ litres \ of \ water \ can \ be \ discharged}}}

\sf\purple{\tt{in \ 5 \ minutes \ through \ the \ pipe.}}

Answered by TheSentinel
67

\purple{\underline{\underline{\pink{\boxed{\boxed{\red{\star{\sf Question:}}}}}}}} \\ \\

\rm{Water \ comes \ out \ of \ pipe \ at \ a \ speed \ of}

\rm{5 \ ms^{1}. \ If \ the \ radius \ of \ the \ pipe \ is \ 8 \ cm,}

\rm{Find \ the \ volume \ of \ water \ ( \ in \ liters \ ) \ that }

\rm{can \ be \ discharged \ by \ the \ pipe \ in \ 5 \ min.}

\rm{( \ Take \ pi =3.14 ) .}

____________________________________________

\purple{\underline{\underline{\orange{\boxed{\boxed{\green{\star{\sf Answer:}}}}}}}} \\ \\

\tt{\blue{\underline{\red{3014400 \ litres \ of \ water \ can \ be \ discharged}}}}

\tt{\blue{\underline{\red{in \ 5 \ minutes \ through \ the \ pipe.}}}}

____________________________________________

\sf\large\underline\pink{Given:} \\ \\

\rm{For \ cylindrical \ pipe,}

\rm{Radius (r)=8 \ cm=0.08 \ m}

\rm{Speed \ of \ water=5 \ m \ s^{-1}}

\rm{Time(t)=5 \ minutes=300 \ seconds}

____________________________________________

\sf\large\underline\blue{To \ Find} \\ \\

\sf{The \ volume \ of \ water \ discharged.}

____________________________________________

\green{\underline{\underline{\red{\boxed{\boxed{\purple{\star{\sf Solution:}}}}}}}} \\ \\

\rm{We \ know} \\ \\

\star{\rm{Distance=Time\times \ Speed}} \\

\rm{\implies{Distance=300\times5}} \\

\rm{\implies{Distance=1500 \ m}} \\

\rm{But, \ in \ this \ case ,}

\rm{Distance \ is \ equal \ to \ the \ height \ of \ the \ cylinder}

\rm\therefore{distance \ = \ Height \ of \ cylinder} \\

\rm{\therefore{Height \ of \ cylindrical \ pipe=1500 \ m}}

\rm{Also,}

\star{\rm{Volume \ of \ cylinder}}

\rm{\implies{ \pi\times \ r^{2}\times \ h}} \\

\rm{\therefore{Volume \ of \ cylindrical \ pipe}} \\ \\

\rm{\implies{ \pi\times0.08^{2}\times1500}} \\

\rm{\therefore{Volume \ of \ cylindrical \ pipe}} \\

\rm{\implies{3.14\times64\times15}} \\

\rm{\therefore{Volume \ of \ cylindrical \ pipe}}

\rm{\implies{3014.4 \ m^{3}}} \\

\rm{\therefore{The \ volume \ of \ water \ discharged}}

\rm{\implies{3014.4 \ m^{3}}} \\ \\

\rm{\therefore{The \ volume \ of \ water \ discharged}}

\rm{\implies{3014.4\times1000 \ litres}}

\rm{As, 1 \ m^{3}=1000 \ litres.}

\rm{\therefore{The \ volume \ of \ water \ discharged}}

\rm{\implies{3014400 \ litres}} \\ \\

\tt{\blue{\underline{\red{3014400 \ litres \ of \ water \ can \ be \ discharged}}}}

\tt{\blue{\underline{\red{in \ 5 \ minutes \ through \ the \ pipe.}}}}

___________________________________________

\rm\red{Hope \ it \ helps \ :))}

Similar questions