Math, asked by kanakvrao, 10 months ago

Water flowed out of a tank at a steady rate. A total of 18 and one-half gallons flowed out of the tank in 4 and one-fourth hours. Which expression determines the quantity of water leaving the tank per hour?

Answers

Answered by zk982049
16

Answer:

HOPE IT'S HELP U.......

Attachments:
Answered by Evanbo222
2

Answer:

Question:-

Water flowed out of a tank at a steady rate. A total of 18\frac{1}{2} gallons flowed out of the tank in 4 \frac{1}{4} hours. Which expression determines the quantity of water leaving the tank per hour?

a) \frac{17}{4} × \frac{36}{2}

b) \frac{38}{2} × \frac{17}{4}

c) \frac{4}{17} × \frac{37}{2}

d) \frac{37}{2}-\frac{17}{4}

Answer:-

Therefore, c) \frac{4}{17} × \frac{37}{2} is the expression that determines the quantity of water leaving the tank per hour.

Hence, the water leaving the tank per hour is 4\frac{6}{17} gallons.

Step-by-step explanation:

Given:-

  • Water flowed out of the tank = 18\frac{1}{2} gallons

                                                         = \frac{37}{2} gallons

  • Time taken = 4 \frac{1}{4} hours

                           =  \frac{17}{4} hours

Therefore, \frac{37}{2} gallons of water flowed out of the tank in  \frac{17}{4} hours.

So, water flowed out of the tank per hour =  \frac{37}{2} ÷  \frac{17}{4}

                                                                     =  \frac{37}{2} × \frac{4}{17}

                                                                     = \frac{148}{34}

                                                                     = \frac{74}{17}

                                                                    = 4\frac{6}{17} gallons.

Hence, the water leaving the tank per hour is 4\frac{6}{17} gallons.

#SPJ2

Similar questions