English, asked by Anonymous, 1 year ago

water flows in a horizontal tube. the pressure of water change by 600Nm² . between A and B wheras the area of cross section are 30cm² and 15cm² . find the rate of flow of water through the tube ?​

Answers

Answered by EzekielIsaac
2

Answer:

Explanation:

Let velocity at A & B are VA & VB respectively

By equation of continuity

VBVA=3015=2

By Bernoulli's equation

PA+12ρV2A=PB+12ρV2B

PA−PB=12ρ(2VA)2−12ρV2A=32ρV2A

⇒600=32(1000kgm−3)V2A

VA=0.63ms−1

∴ Rate of flow =(30cm2)(0.63ms−1)

⇒1890cm3s−1

Hence (B) is the correct answer.

Answered by Anonymous
6

\huge\bf{\blue{\mid{\overline{\underline{your\:answer}}}\mid}}

let the velocity at A= \large{\mathtt{\blue{\underline{ v_{a}}}}}

and that at B= \large{\mathtt{\blue{\underline{ v_{b}}}}}

\bold{by\: the \:equation\: of\: continuity,}

\large{\mathtt{\blue{\underline{ \frac{ v_{b} }{ v_{a} }  =  \frac{ {30cm}^{2} }{ {15cm }^{2} } = 2 }}}}

\bold{by \:Bernoulli\: equation,}

\large{\mathtt{\blue{\underline{ p_{a} +  \frac{1}{2} p { v_{a}  }^{2} =  p_{b} +  \frac{1}{2}  { pv_{b} }^{2} }}}}

\large{\mathtt{\blue{\underline{ =  >  p_{a} -  p_{b} =  \frac{1}{2} p {( 2v_{a} )}^{2}  -  \frac{1}{2} p { v_{a} }^{2}  =  \frac{3}{2} p { v_{a} }^{2} }}}}

\large{\mathtt{\blue{\underline{ =  > 600 {nm}^{ - 2}  =  \frac{3}{2} (1000kg {m}^{ - 3}) { v_{a} }^{2}  }}}}

\large{\mathtt{\blue{\underline{ =  >  v_{a} =  \sqrt{0.4 {m}^{2}  {s}^{ - 2} }  = 0.63m {s}^{ - 1} }}}}

\bold{the \:rate \:of \:flow,}

\large{\mathtt{\blue{\underline{ =  >  ( {30cm}^{2} )(0.63 {ms}^{ - 1} ) }}}}

\large{\mathtt{\blue{\underline{ 1890 {cm}^{3}  \:  {s}^{ - 1} }}}}

________________________________

Similar questions