Math, asked by Ameet45, 6 months ago

Water in a canal, 6 m wide and 1.5 m deep, is flowing with a speed of 10 km/hrs. How much area will it irrigate in 30 minutes, if 8 cm standing water is needed?

Answers

Answered by Anonymous
15

 \boxed{ \boxed{ \overline {\underline{ \bf \red {SOLUTION \: ☻ }}}}}

 \rm \: Given, \: speed \: of \: flow \: of \: water = 10km/h

 \rm = 10 \times 1000 \: m/h \:  [\because \: 1 \: km = 1000 \: m]

 \longrightarrow \:  \rm \: Length \: of \: water \: flow \: in \: 1 \: h = 0 \times 1000 \: m \\

 \longrightarrow \:  \rm \: Length \: of \: water \: flow \: in \: 30 \: min \bigg( i.e. \: in \:  \frac{1}{2} \: h \bigg) \\

 =  \rm \frac{1}{2} \times 10 \times 1000 = 5000 \: m

 \rm \: Now, \: volume \: of \: water \: flowing \: in \: 30 \: min

 \rm = volume \: of \: cuboid \: of \: length \: 5000 \: m,

 \rm \: width \: 6 \: m \: and \: depth \: 1.5 \: m

 \rm = 6 \times 1.5 \times 5000 \: m  {}^{3}  = 4500 \: m {}^{3}

 \rm \: Hence, \: the \: required \: area \: covered \: for \: irrigation \: with \:

 \rm \: 8 \: cm \: or \:  \frac{8}{100} \: m \: of \: standing \: water

 \rm =  \frac{4500}{8} \times 100 = 562500 \: m {}^{2}

   \rm = \:   \frac{562500}{10000} \: hec

  = {\boxed{\underline{\underline{\rm \red{56.25 \: hec}}}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm  [\because \: 1 \: hec = 10000 \: m {}^{2}]

Attachments:
Similar questions