Chemistry, asked by cristina9291, 1 year ago

Wavelength Of Light 7000A.No Of Photons Required To Provide 20J Energy

Answers

Answered by Anonymous
44

Answer:

\large \text{7\times10^{19}$}}

Explanation:

Given :

Energy ( E )  = 20 J

Wavelength ( λ ) = 7000 A

We have to find numbers of photons.

Let numbers of photons be n.

We have planck's energy equation

\large \text{$e=nhv$}

where   e = energy

n  = numbers of photons

h = planck's constant

v = frequency

\large \text{We know value of h $ =6.626\times10^{-34} \ J \ sec$}\\\\\\\large \text{We also know that v is nothing but $\dfrac{c}{\lambda}$}\\\\\\\large \text{Value of c $ =3\times10^{8} \ m/sec$}\\\\\\\large \text{Here wave length is in Agrotron }\\\\\\\large \text{convert it into metre ( m ) we get $7000\times10^{-10} \ m$}}

Now put the values in equation

\large \text{$20=n\times 6.626\times10^{-34} \times\dfrac{3\times10^{8}}{7000\times10^{-10}}$}\\\\\\\large \text{$n=\dfrac{20\times7000\times10^{-10}}{6.626\times10^{-34}\times3\times10^{8}}$}\\\\\\\large \text{$n=\dfrac{2\times7\times10^{4}\times10^{-10}}{6.626\times10^{-34}\times3\times10^{8}}$}\\\\\\\large \text{$n=\dfrac{14\times10^{-6}}{6.626\times3\times10^{-26}}$}\\\\\\\large \text{$n=\dfrac{14\times10^{-6}\times10^{26}}{6.626\times3}$}

\large \text{$n=\dfrac{14\times10^{20}}{6.626\times3}$}\\\\\\\large \text{$n=\dfrac{14\times10^{20}}{19.878}$}\\\\\\\large \text{$n=\dfrac{140\times10^{19}}{19.878}$}\\\\\\\large \text{$n=7.04\times10^{19}$}\\\\\\\large \text{About $n=7\times10^{19}$}

Thus the numbers of photons is 7 × 10¹⁹.

Answered by TheSentinel
24

Question:

Wavelength of light 7000 A . Number of photons required to provide 20J energy.

Answer:

Photons required : \rm\pink{ 7 \times 10^{19}}

Given:

Wavelength of light : 7000 A.

Energy : 20 J.

To Find:

We are given ,

Wavelength of light (λ) : 7000 A.

Energy (E) : 20 J.

Let , the number of photons be n.

We know,

e = nh \nu

............. plank's energy equation.

Where ,

e = energy

n= number of photons

h= plank's constant

v = frequency

we know,

h = 6.626 \times  {10}^{ - 34} J

but \:  \: \nu  =  \frac{c}{\lambda}

c = 3 \times  {10}^{8}   \frac{m}{s}

also ,

7000A = 7000 \times 1 {10}^{ - 10}

\rm\large{20 = n \times 6.626 \times  {10}^{ - 34}   \times  \frac{3 \times  {10}^{8} }{7000 \times  {10}^{ - 10} }}

\rm\large{n =  \frac{20 \times 7000 {10}^{ - 10} }{6.626 \times  {10}^{34} \times 3 \times  {10}^{8}  }}

\rm\large{n =  \frac{2 \times 7 \times  {10}^{4} {10}^{ - 10}  }{6.626 \times 3 \times  {10}^{ - 26} }}

\rm\large{n =  \frac{14 \times  {10}^{6} }{6.626 \times 3 {10}^{ - 26} }}

\rm\large{n =  \frac{14 \times  {10}^{6}  {10}^{26} }{6.626 \times 3}}

\rm\large{n =  \frac{14 \times  {10}^{20} }{6.626 \times 3} }

\rm\large{n =  \frac{14 \times  {10}^{20} }{19.878} }

\rm\large{n = 7.04 \times  {10}^{19} }

Number of photons : \rm\large\pink{ 7 \times 10^{19} \  ...... ( approx )}

Similar questions