Math, asked by vasoolibhai20, 3 days ago

we have to find the area ​

Attachments:

Answers

Answered by NikethKumaran
1

Answer:

\sf \green {\therefore \: Area \: of \: quadrilateral \: \sf \green ∆ABCD}  = \sf \green {{44 \: cm}^{2}}

Step-by-step explanation:

 \sf Area \: of \: ∆ADC =  \frac{1}{2}  \times B \times H

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: =  \frac{1}{2}  \times (4 + 7) \times 3

 \sf =  \frac{1}{2}  \times 11 \times 3 = \frac{1}{2} \times 33 =  \frac{33}{2}

= 16.5 cm²

\sf Area \: of \: ∆ABH = \frac{1}{2} \times B \times H

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{ \cancel2}  \times  \cancel {4}^{2} \times 5 = 2 \times 5

= 10 cm²

\sf Area \: of \: ∆BHC = \frac{1}{2} \times B \times H

 \sf \:  \:  \:  \:  \:  \: \:  =  \frac{1}{2}  \times 7 \times 5 =  \frac{1 \times 7 \times 5}{2}  =  \frac{35}{2}

= 17.5 cm²

Area of quadrilateral ABCD = Area of ∆ADC + Area of ∆ABH + Area of ∆BHC

= 16.5 cm² + 10 cm² + 17.5 cm²

= 44 cm²

Similar questions