We have to find, the value of is:
Answers
∴
=
= [ ∵ ]
=
=
= [ ∵ ]
=
= [ ∵ ]
=
=
= 9
∴ = 9
___________________________
Step-by-step explanation:
RequiredSolution:
∴ (1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)(1−ω)(1−ω
2
)(1−ω
4
)(1−ω
8
)
= (1-\omega)(1-\omega^2)(1-\omega^3.\omega)(1-(\omega^3)^2\omega^2)(1−ω)(1−ω
2
)(1−ω
3
.ω)(1−(ω
3
)
2
ω
2
)
= (1-\omega)(1-\omega^2)(1-\omega)(1-\omega^2)(1−ω)(1−ω
2
)(1−ω)(1−ω
2
) [ ∵ \omega^3=1ω
3
=1 ]
= (1-\omega)^2(1-\omega^2)^2(1−ω)
2
(1−ω
2
)
2
= (1-2\omega+\omega^2)(1-2\omega^2+\omega^4)(1−2ω+ω
2
)(1−2ω
2
+ω
4
)
= (1-2\omega+\omega^2)(1-2\omega^2+\omega)(1−2ω+ω
2
)(1−2ω
2
+ω) [ ∵ \omega^3=1ω
3
=1 ]
= (1-2\omega+\omega^2)(1-2\omega^2+\omega)(1−2ω+ω
2
)(1−2ω
2
+ω)
= (-2\omega-\omega)(-2\omega^2-\omega^2)(−2ω−ω)(−2ω
2
−ω
2
) [ ∵ 1+\omega+\omega^2=01+ω+ω
2
=0 ]
= (-3\omega)(-3\omega^2)(−3ω)(−3ω
2
)
= 9\omega^39ω
3
= 9
∴ (1-\omega)(1-\omega^2)(1-\omega^4)(1-\omega^8)(1−ω)(1−ω
2
)(1−ω
4
)(1−ω
8
) = 9
___________________________