Math, asked by pranitbt123, 21 days ago

WE HAVE TO PROVE LHS = RHS. PROVING STEP BY STEP WILL BE APPRECIATED

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

your answer is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove \: that :  \\  \frac{sin {}^{2}x }{1 - cot \: x}  +  \frac{cos {}^{2}x }{1 - tan \: x}   = 1 + sin \: x.cos \: x \\  \\ LHS =  \frac{sin {}^{2} x}{1 - cot \: x}  +  \frac{cos {}^{2} x}{1 - tan \: x}  \\  \\  =  \frac{sin {}^{2} x}{1 -  \frac{cos \: x}{sin \: x} }  +  \frac{cos {}^{2} x}{1 -  \frac{sin \: x}{cos \: x} }  \\  \\  =   \frac{ \frac{sin {}^{2} x}{sin \: x - cos \: x} }{sin \: x}  +  \frac{ \frac{cos {}^{2}x }{cos \: x - sin \: x} }{cos \: x}  \\  \\  =  \frac{sin {}^{3}x }{sin \: x - cos \: x}  +  \frac{cos {}^{3}x }{ - (sin \: x - cos \: x)}  \\  \\  =  \frac{sin {}^{3} x}{sin \: x - cos \: x}  -  \frac{cos {}^{3} x}{sin \: x - cos \: x}  \\  \\  =  \frac{sin {}^{3} x - cos {}^{3}x }{sin \: x - cos \: x}  \\  \\  =  \frac{(sin \: x - cos \: x)(sin {}^{2} x + cos {}^{2}x + sin \: x.cos \: x) }{sin \: x - cos \: x}  \\  \\  = sin {}^{2} x + cos {}^{2} x + sin \: x.cos \: x \\  \\  = 1 + sin \: x.cos \: x \\  \\  = RHS \\  \\ hence \: proved

Similar questions