Math, asked by kaursimran112626, 8 months ago

we join all the A4 sheets used by humans in a year and make a huge sheet in the same ratio as A4, what will be the appropriate estimation for the sides of this huge sheet? The average consumption of papers per human on an average is 55 Kg. Assume the weight of a bundle of 500 A4 papers is 2 Kg. The current world population is 7.8 billion. अगर हम एक वर्ष में मनुष्यों द्वारा इस्तेमाल किए गए सभी A4 कागज जोड़कर A4 के ही अनुपात की एक विशाल शीत बना दें, तो उसकी लम्बाई और चौड़ाई कितनी होगी? प्रति व्यक्ति काग़ज़ की औसत खपत 55 Kg है और 500 A4 पेपर के बंडल का वजन 2 Kg है। वर्तमान विश्व जनसंख्या 7.8 बिलियन है।​

Answers

Answered by mysticsumiya005
2

Given : join all the A4 sheets used by humans in a year and make a huge sheet in the same ratio as A4, The average consumption of papers per human on an average is 55 Kg. Assume the weight of a bundle of 500 A4 papers is 2 Kg. The current world population is 7.8 billion.

To find : what will be the appropriate estimation for the sides of this huge sheet?

Solution:

population = 7.8 Billion = 7.8 * 10⁹

The average consumption of papers per human on an average is 55 Kg

Hence total consumption = 7.8 * 10⁹ * 55

= 429 * 10⁹ kg

2 Kg = 500

=> 1 kg = 250

= 429 * 10⁹ * 250

= 1,07,250 * 10⁹

= 107.25 * 10¹²

A4 Sheet size = 297 mm * 210 mm

Area = 297 * 210 mm²

= 62370 mm²

Total area = 107.25 * 10¹² * 62370 mm²

= 6.689 * 10¹⁸ mm²

1 m = 10³ mm

=> 1 m² = 10⁶ mm²

1 km² = 10⁶ m² = 10¹² m²

6.689 * 10⁶ km²

2.175 x 10³ * 3.076 10³ km²

= 2175 km x 3076 km

appropriate estimation for the sides of this huge sheet

2175 km x 3076 km

HOPE IT WILL HELP YOU AND DON'T FORGET TO FOLLOW ME AND MARK IT AS BRAINLIEST...

Similar questions