Science, asked by Anonymous, 7 months ago

We measure the period of
oscillation of a simple pendulum. In successive measurements, the readings turn out to be 2.63 s, 2.56 s, 2.42 s, 2.71s.and 2.80s. Calculate the absolute errors,relative error or percentage error.​

Answers

Answered by Anonymous
1

Answer:

We measure the period of

oscillation of a simple pendulum. In successive measurements, the readings turn out to be 2.63 s, 2.56 s, 2.42 s, 2.71s.and 2.80s

Answered by Joker444
6

To Find :

  • absolute errors , relative error or percentage error.

Solution :

Reading : 2.63 s , 2.56 s, 2.42 s, 2.71 s and 2.80 s.

The mean period of oscillation pendulum

 \sf \:T \:   =  \frac{sum \: of \: all \: observations}{number \: of \: observations}  \\  \\ \sf \:T \:   =  \frac{(2.63 + 2.56 + 2.42 + 2.71 + 2.80)s}{5}  \\  \\ \sf \:T \:   =  \frac{13.12 \: s}{5}  \\  \\ \sf \:T \:   = 2.624 \: s \\  \\ \sf \:T \:   = 2.62 \: s

  • Errors In measurements are :-

2.63 s - 2.62 s = 0.01 s

2.56 s - 2.62 s = - 0.06 s

2.42 s - 2.62 s = 0. 20 s

2.71 s - 2.62 s = 0.09 s

2.80 s - 2.62 s = 0.18 s

Arithmetic mean of all absolute errors :

 \Delta\sf \:T \:   =  \frac{(0.01 + 0.06 + 0.20 + 0.09 + 0.18)s}{5} \\  \\ \sf \: =  \frac{0.54 \: s}{5}  \\  \\  \sf = 0.11 \: s

T = 2.6 ± 0.1 s

The relative error or percentage error :

\sf\:\Delta{a} = \frac{0.1}{2.6}\times 100\\\\\sf = 4\%

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions