Math, asked by smtanweerquadri, 4 months ago

whar is the lcm of 12. 18and37​


adityapandeysfs: it's easy some do own your own

Answers

Answered by shivamyadav1123
0

Answer:l

lcm of 12 is = 2*2*3= 12

18 = 2*3*3= 18

37= 37

Step-by-step explanation:

hope its help you

thank you

Answered by CɛƖɛxtríα
72

{\underline{\underline{\bf{Question:}}}}

  • \sf{What\:is\:the\:L.C.M\:of\:12,\:18\:and\:37?}

{\underline{\underline{\bf{Answer:}}}}

  • \sf{The\:L.C.M\:of\:12,\:18\:and\:37\:is\:\red{\underline{1332}}.}

\:\:

{\underline{\underline{\bf{Step\:by\:step\: explanation:}}}}

L.C.M of 12, 18 and 37 by Synthetic Division Method:

\large{ \begin{array}{c|c} \sf 2 & \sf{ 12 , 18 , 37} \\ \cline{1-2} \sf 3 & \sf { 6 , 9 , 37} \\ \cline{1-2} \sf 2 & \sf{ 2 , 3 , 37} \\ \cline{1-2} \sf 3 & \sf{ 1 , 3 , 37} \\ \cline{1-2} \sf 37 & \sf{ 1 , 1 , 37 }\\ \cline{1-2} & \sf{ 1 , 1 , 1} \end{array}}

\sf{L.C.M=2\times 3\times 2\times 3\times 37=\red{\underline{1332}}}

________________________________________

\underline{\boxed{\bf{Math\:Flash}}}

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{\underline{\underline{\bf{Quarternions}}}}

  • If we don't use the properties of order and the commutative law of multiplication, we obtain an interesting further extension of the complex number system. It's known as Quarternions.
  • They are of the form \tt{a+bi+cj+dk} where \tt{a,b,c,d} are real numbers and \tt{i,j, k} are variables.

Anonymous: Purr-fect!!
CɛƖɛxtríα: Thanks

:)
Similar questions