Environmental Sciences, asked by kvngizaiah100, 1 year ago

What activities make up the process of Science?

Answers

Answered by kjesnajose
0

Answer:

Explanation:

Science circles back on itself so that useful ideas are built upon and used to learn even more about the natural world. This often means that successive investigations of a topic lead back to the same question, but at deeper and deeper levels. Let's begin with the basic question of how biological inheritance works. In the mid-1800s, Gregor Mendel showed that inheritance is particulate — that information is passed along in discrete packets that cannot be diluted. In the early 1900s, Walter Sutton and Theodor Boveri (among others) helped show that those particles of inheritance, today known as genes, were located on chromosomes. Experiments by Frederick Griffith, Oswald Avery, and many others soon elaborated on this understanding by showing that it was the DNA in chromosomes which carries genetic information. And then in 1953, James Watson and Francis Crick, again aided by the work of many others, provided an even more detailed understanding of inheritance by outlining the molecular structure of DNA. Still later in the 1960s, Marshall Nirenberg, Heinrich Matthaei, and others built upon this work to unravel the molecular code that allows DNA to encode proteins. And it doesn't stop there. Biologists have continued to deepen and extend our understanding of genes, how they are controlled, how patterns of control themselves are inherited, and how they produce the physical traits that pass from generation to generation.

hope u are satisfied

Answered by srushtisp2020
0

The process of science, as represented here, is the opposite of "cookbook" (to see the full complexity of the process, roll your mouse over each element). In contrast to the linear steps of the simplified scientific method, this process is non-linear

The steps of the scientific method go something like this:

Make an observation or observations.

Ask questions about the observations and gather information.

Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.

Test the hypothesis and predictions in an experiment that can be reproduced.

Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.

Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility – no science."

Similar questions