What allowed humans to move forward of other species and become who we aren today?
Answers
Walking upright on two legs is the trait that defines the hominid lineage: Bipedalism separated the first hominids from the rest of the four-legged apes. It took a while for anthropologists to realize this. At the turn of the 20th century, scientists thought that big brains made hominids unique. This was a reasonable conclusion since the only known hominid fossils were of brainy species–Neanderthals and Homo erectus.
That thinking began to change in the 1920s when anatomist Raymond Dart discovered the skull known as the Taung Child in South Africa. Taung Child had a small brain, and many researchers thought the approximately three-million-year-old Taung was merely an ape. But one feature stood out as being human-like. The foramen magnum, the hole through which the spinal cord leaves the head, was positioned further forward under the skull than an ape’s, indicating that Taung held its head erect and therefore likely walked upright. In the 1930s and 1940s, further fossil discoveries of bipedal apes that predated Neanderthals and H. erectus (collectively called australopithecines) helped convince anthropologists that walking upright came before big brains in the evolution of humans. This was demonstrated most impressively in 1974 with the finding of Lucy, a nearly complete australopithecine skeleton. Although Lucy was small, she had the anatomy of a biped, including a broad pelvis and thigh bones that angled in toward the knees, which brings the feet in line with the body’s center of gravity and creates stability while walking.
In more recent decades, anthropologists have determined that bipedalism has very ancient roots. In 2001, a group of French paleoanthropologists unearthed the seven-million-year-old Sahelanthropus tchadensis in Chad. Known only from a skull and teeth, Sahelanthropus‘ status as an upright walker is based solely on the placement of its foramen magnum, and many anthropologists remain skeptical about the species’ form of locomotion. In 2000, paleoanthropologists working in Kenya found the teeth and two thigh bones of the six-million-year-old Orrorin tugenensis. The shape of the thigh bones confirms Orrorin was bipedal. The earliest hominid with the most extensive evidence for bipedalism is the 4.4-million-year-old Ardipithecus ramidus. In 2009, researchers announced the results of more than 15 years of analysis of the species and introduced the world to a nearly complete skeleton called Ardi.
Hope it helps you
Please mark as brainliest please
#SANGUN