Physics, asked by Gojoh, 11 months ago

What amount of heat must be supplied to 2.0 × 10–2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure? (Molecular mass of N2 = 28; R = 8.3 J mol–1 K–1.)​

Answers

Answered by Anonymous
11

Answer:

The cylinder is completely insulated from its surroundings. As a result, no heat is exchanged between the system (cylinder) and its surroundings. Thus, the process is adiabatic.

Initial pressure inside the cylinder = P1

Final pressure inside the cylinder = P2

Initial volume inside the cylinder = V1

Final volume inside the cylinder = V2

Ratio of specific heats, γ = 1.4

For an adiabatic process, we have:

P1V1γ = P2V2γ

The final volume is compressed to half of its initial volume.

∴ V2 = V1/2

P1V1γ = P2(V1/2)γ

P2/P1 = V1γ / (V1/2)γ

= 2γ = 21.4 = 2.639

Answered by BibonBeing01
3

Explanation:

Mass of our galaxy Milky Way, M = 2.5 × 1011 solar mass

Solar mass = Mass of Sun = 2.0 × 1036 kg

Mass of our galaxy, M = 2.5 × 1011 × 2 × 1036 = 5 × 1041 kg

Diameter of Milky Way, d = 105 ly

Radius of Milky Way, r = 5 × 104 ly

1 ly = 9.46 × 1015 m

∴r = 5 × 104 × 9.46 × 1015

= 4.73 ×1020 m

Since a star revolves around the galactic centre of the Milky Way, its time period is given by the relation:

T = ( 4π2r3 / GM)1/2

= [ (4 × 3.142 × 4.733 × 1060) / (6.67 × 10-11 × 5 × 1041) ]1/2

= (39.48 × 105.82 × 1030 / 33.35 )1/2

= 1.12 × 1016 s

1 year = 365 × 324 × 60 × 60 s

1s = 1 / (365 × 324 × 60 × 60) years

∴ 1.12 × 1016 s = 1.12 × 1016 / (365 × 24 × 60 × 60) = 3.55 × 108 years

Similar questions