what are advatages and disadvantages of using modern farming methods
Answers
Answered by
1
What are the advantages and disadvantages of modern agriculture?
Agricultural systems depended on internal resources, recycling of organic matter, built-in biological control mechanisms and rainfall patterns. Agricultural yields were modest, but stable. Production was safeguarded by growing more than one crop or variety in space and time in a field as insurance against pest outbreaks or severe weather. Inputs of nitrogen were gained by rotating major field crops with legumes. In turn rotations suppressed insects, weeds and diseases by effectively breaking the life cycles of these pests.
Advantages of modern agriculture
During the latter half of the twentieth century, what is known today as modern agriculture was very successful in meeting a growing demand for food by the world's population. Yields of primary crops such as rice and wheat increased dramatically, the price of food declined, the rate of increase in crop yields generally kept pace with population growth, and the number of people who consistently go hungry was slightly reduced. This boost in food production has been due mainly to scientific advances and new technologies, including the development of new crop varieties, the use of pesticides and fertilizers, and the construction of large irrigation systems.
Disadvantages of modern agriculture
Evidence indicates, however, that excessive reliance on monoculture farming and agroindustrial inputs, such as capital-intensive technology, pesticides, and chemical fertilizers, has negatively impacted the environment and rural society. Most agriculturalists had assumed that the agroecosystem/natural ecosystem dichotomy need not lead to undesirable consequences, yet, unfortunately, a number of "ecological diseases" have been associated with the intensification of food production. They may be grouped into two categories: diseases of the ecotope, which include erosion, loss of soil fertility, depletion of nutrient reserves, salinization and alkalinization, pollution of water systems, loss of fertile croplands to urban development, and diseases of the biocoenosis, which include loss of crop, wild plant, and animal genetic resources, elimination of natural enemies, pest resurgence and genetic resistance to pesticides, chemical contamination, and destruction of natural control mechanisms.
Chemical fertilizers can also become air pollutants, and have recently been implicated in the destruction of the ozone layer and in global warming. Their excessive use has also been linked to the acidification/salinization of soils and to a higher incidence of insect pests and diseases through mediation of negative nutritional changes in crop plants . Use of fertilizers can alter the biology of rivers and lakes. Applied in either liquid or granular form, fertilizer can supply crops with readily available and uniform amounts of several essential plant nutrients. Fertilizers, on the other hand, have been praised as being highly associated with the temporary increase in food production observed in many countries. National average rates of nitrate applied to most arable lands fluctuate between 120-550 kg N/ha. But the bountiful harvests created at least in part through the use of chemical fertilizers, have associated, and often hidden, costs. A primary reason why chemical fertilizers pollute the environment is due to wasteful application and the fact that crops use them inefficiently. The fertilizer that is not recovered by the crop ends up in the environment, mostly in surface water or in ground water. Nitrate contamination of aquifers is widespread and in dangerously high levels in many rural regions of the world. Such nitrate levels are hazardous to human health and studies have linked nitrate uptake to methaemoglobinemia in children and to gastric, bladder and oesophageal cancers in adults.
Agricultural systems depended on internal resources, recycling of organic matter, built-in biological control mechanisms and rainfall patterns. Agricultural yields were modest, but stable. Production was safeguarded by growing more than one crop or variety in space and time in a field as insurance against pest outbreaks or severe weather. Inputs of nitrogen were gained by rotating major field crops with legumes. In turn rotations suppressed insects, weeds and diseases by effectively breaking the life cycles of these pests.
Advantages of modern agriculture
During the latter half of the twentieth century, what is known today as modern agriculture was very successful in meeting a growing demand for food by the world's population. Yields of primary crops such as rice and wheat increased dramatically, the price of food declined, the rate of increase in crop yields generally kept pace with population growth, and the number of people who consistently go hungry was slightly reduced. This boost in food production has been due mainly to scientific advances and new technologies, including the development of new crop varieties, the use of pesticides and fertilizers, and the construction of large irrigation systems.
Disadvantages of modern agriculture
Evidence indicates, however, that excessive reliance on monoculture farming and agroindustrial inputs, such as capital-intensive technology, pesticides, and chemical fertilizers, has negatively impacted the environment and rural society. Most agriculturalists had assumed that the agroecosystem/natural ecosystem dichotomy need not lead to undesirable consequences, yet, unfortunately, a number of "ecological diseases" have been associated with the intensification of food production. They may be grouped into two categories: diseases of the ecotope, which include erosion, loss of soil fertility, depletion of nutrient reserves, salinization and alkalinization, pollution of water systems, loss of fertile croplands to urban development, and diseases of the biocoenosis, which include loss of crop, wild plant, and animal genetic resources, elimination of natural enemies, pest resurgence and genetic resistance to pesticides, chemical contamination, and destruction of natural control mechanisms.
Chemical fertilizers can also become air pollutants, and have recently been implicated in the destruction of the ozone layer and in global warming. Their excessive use has also been linked to the acidification/salinization of soils and to a higher incidence of insect pests and diseases through mediation of negative nutritional changes in crop plants . Use of fertilizers can alter the biology of rivers and lakes. Applied in either liquid or granular form, fertilizer can supply crops with readily available and uniform amounts of several essential plant nutrients. Fertilizers, on the other hand, have been praised as being highly associated with the temporary increase in food production observed in many countries. National average rates of nitrate applied to most arable lands fluctuate between 120-550 kg N/ha. But the bountiful harvests created at least in part through the use of chemical fertilizers, have associated, and often hidden, costs. A primary reason why chemical fertilizers pollute the environment is due to wasteful application and the fact that crops use them inefficiently. The fertilizer that is not recovered by the crop ends up in the environment, mostly in surface water or in ground water. Nitrate contamination of aquifers is widespread and in dangerously high levels in many rural regions of the world. Such nitrate levels are hazardous to human health and studies have linked nitrate uptake to methaemoglobinemia in children and to gastric, bladder and oesophageal cancers in adults.
Similar questions