what are imarginary numbers
Answers
Answer:
An imaginary number is a complex number that can be written as a real number multiplied by the imaginary unit i,[note 1] which is defined by its property i2 = −1.[1][2] The square of an imaginary number bi is −b2. For example, 5i is an imaginary number, and its square is −25. By definition, zero is considered to be both real and imaginary.[3] The set of imaginary numbers is sometimes denoted using the blackboard bold letter {\displaystyle \mathbb {I} }\mathbb {I} .[4]
Originally coined in the 17th century by René Descartes[5] as a derogatory term and regarded as fictitious or useless, the concept gained wide acceptance following the work of Leonhard Euler (in the 18th century) and Augustin-Louis Cauchy and Carl Friedrich Gauss (in the early 19th century).
An imaginary number bi can be added to a real number a to form a complex number of the form a + bi, where the real numbers a and b are called, respectively, the real part and the imaginary part of the complex number.[6][note 2]
Answer:
An Imaginary Number, when squared, gives a negative result