what are light rays?
Answers
Answer:
The basic element in geometrical optics is the light ray, a hypothetical construct that indicates the direction of the propagation of light at any point in space. The origin of this concept dates back to early speculations regarding the nature of light. By the 17th century the Pythagorean notion of visual rays had long been abandoned, but the observation that light travels in straight lines led naturally to the development of the ray concept. It is easy to imagine representing a narrow beam of light by a collection of parallel arrows—a bundle of rays. As the beam of light moves from one medium to another, reflects off surfaces, disperses, or comes to a focus, the bundle of rays traces the beam’s progress in a simple geometrical manner.
Explanation:
Geometrical optics consists of a set of rules that determine the paths followed by light rays. In any uniform medium the rays travel in straight lines. The light emitted by a small localized source is represented by a collection of rays pointing radially outward from an idealized “point source.” A collection of parallel rays is used to represent light flowing with uniform intensity through space; examples include the light from a distant star and the light from a laser. The formation of a sharp shadow when an object is illuminated by a parallel beam of light is easily explained by tracing the paths of the rays that are not blocked by the object.
Reflection and refraction:
Light rays change direction when they reflect off a surface, move from one transparent medium into another, or travel through a medium whose composition is continuously changing. The law of reflection states that, on reflection from a smooth surface, the angle of the reflected ray is equal to the angle of the incident ray. (By convention, all angles in geometrical optics are measured with respect to the normal to the surface—that is, to a line perpendicular to the surface.) The reflected ray is always in the plane defined by the incident ray and the normal to the surface. The law of reflection can be used to understand the images produced by plane and curved mirrors. Unlike mirrors, most natural surfaces are rough on the scale of the wavelength of light, and, as a consequence, parallel incident light rays are reflected in many different directions, or diffusely. Diffuse reflection is responsible for the ability to see most illuminated surfaces from any position—rays reach the eyes after reflecting off every portion of the surface.
Answer:
hope it is helpful to u....