Math, asked by khandelwalgarv23, 9 months ago

what are rational number? explain it.

Answers

Answered by Anonymous
2

Answer:

Rational Numbers

  • Any number in the form of p/q , where p and q are integers and q ≠ 0 , is called a rational number.

For example :-

  • 1,2,3.....
  • 0,1,2.....
  • -2, -1, 0, 1, 2, .......
  • 1/2, 2/3, 3/4, .......
  • -1/2, -4/3, -6/7 .......

All, the natural numbers are also example of rational number.

All the whole numbers are also example of rational number.

All the integer are also examples of rational number.

All the fractional numbers are also the examples of rational numbers.

All the fundamental operations like addition, subtraction, multiplication and division can be done on rational numbers.

Answered by Raunak14khandelwal
1

Answer:

In mathematics, a rational number is a number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational number. The set of all rational numbers, often referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by a boldface Q. it was thus denoted in 1895 by Giuseppe Peano after quoziente, Italian for "quotient".

The decimal expansion of a rational number always either terminates after a finite number of digits or begins to repeat the same finite sequence of digits over and over. Moreover, any repeating or terminating decimal represents a rational number. These statements hold true not just for base 10, but also for any other integer base (e.g. binary, hexadecimal).

A real number that is not rational is called irrational. Irrational numbers include √2, π, e, and φ. The decimal expansion of an irrational number continues without repeating. Since the set of rational numbers is countable, and the set of real numbers is uncountable, almost all real numbers are irrational.

Rational numbers can be formally defined as equivalence classes of pairs of integers (p, q) such that q ≠ 0, for the equivalence relation defined by (p1, q1) ~ (p2, q2) if, and only if p1q2 = p2q1. With this formal definition, the fraction p/q becomes the standard notation for the equivalence class of (p, q).

Rational numbers together with addition and multiplication form a field which contains the integers and is contained in any field containing the integers. In other words, the field of rational numbers is a prime field, and a field has characteristic zero if and only if it contains the rational numbers as a subfield. Finite extensions of Q are called algebraic number fields, and the algebraic closure of Q is the field of algebraic numbers.

In mathematical analysis, the rational numbers form a dense subset of the real numbers. The real numbers can be constructed from the rational numbers by completion, using Cauchy sequences, Dedekind cuts, or infinite decimals (see Construction of the real numbers.)

Hope it will help you.

Please mark me as brainliest..

Similar questions