Physics, asked by ikhlaas3214, 11 months ago

What are some applications of bernoulli's principle?

Answers

Answered by gauravgh
9
Bernoulli’s Theorem basically relates the pressure, velocity, and elevation in a moving fluid (liquid or gas), the compressibility and viscosity (internal friction) of which are negligible and the flow of which is steady, or laminar.

It can be used to calculate pressure or velocity of the fluid :

Air flight: The main way that Bernoulli's principle works in air flight has to do with the architecture of the wings of the plane. In an airplane wing, the top of the wing is somewhat curved, while the bottom of the wing is totally flat. While in the sky, air travels across both the top and the bottom concurrently. Because both the top part and the bottom part of the plane are designed differently, this allows for the air on the bottom to move slower, which creates more pressure on the bottom, and allows for the air on the top to move faster, which creates less pressure. This is what creates lift, which allows planes to fly. An airplane is also acted upon by a pull of gravity in which opposes the lift, drag and thrust. Thrust is the force that enables the airplane to move forward while drag is air resistance that opposes the thrust force.

Baseball: Baseball Baseball is an example of where Bernoulli's principle is very visible in everyday life, but rarely do most people actually take note of it. One example in baseball is in the case of the curve ball. The entire pitch works because of Bernoulli's principle. Since the stitches of the ball actually form a curve, it is necessary for the pitcher to grip the seams of the baseball. The reason as to why this is a necessity is that by gripping the baseball this way, the pitcher can make the ball spin. This allows for friction to cause a thin layer of air to engulf the misunderstanding of the baseball as it is spinning, but since the ball is spinning in a certain manner, this allows for more air pressure on the top of the ball and less air pressure on the bottom of the ball. Therefore, according to Bernoulli's principle there should be less speed on the top of the ball than there is on the bottom of the ball. What transpires is that the bottom part of the ball accelerates downwards faster than the top part, and this phenomenon allows for the ball to curve downward, which causes the batter to miscalculate the ball's position.

Draft: And furthermore, another example of Bernoulli's principle in our everyday lives is in the case of someone feeling a draft. We all at at least one time or another, have experienced feeling a draft, and it is because of Bernoulli's principle that we feel this draft. Let's say that in your room, you are really hot, but you know that it is nice and cool both outside your window and outside your door. If you open up your window, to try and let fresh air in, there won't be much of a temperature change, unless the door to your room is open to air out the hot air. The reason why it works this way is that if the front door is closed the door will become an area of high pressure built up from the hot air, and right outside the door there is little pressure, meaning that the rate at which the air enters will be in an incredibly high speed. When you open the door, the pressure is relieved from the door on the inside and the hot air exits quickly. When the hot air exits there is a lot more pressure outside meaning that it will take awhile for the cool air to come in. Once the hot air has flown out, the cool air will come in at a fast speed, thus causing a draft.
Engines: The carburetor used in many reciprocating engines contains a venturi to create a region of low pressure to draw fuel into the carburetor and mix it thoroughly with the incoming air. The low pressure in the throat of a venturi can be explained by Bernoulli's principle; in the narrow throat, the air is moving at its fastest speed and therefore it is at its lowest pressure.

Venturi meter: The flow speed of a fluid can be measured using a device called venturi meter. It works on Bernoulli’s principle.
Answered by gulshanlata2gmailcom
3

Answer:

ѕєє thє αnѕwєr.......

Attachments:
Similar questions