Computer Science, asked by nehagupta51096, 7 months ago

what are the base cases in
the following recursive
function?
def recfunction(n):
if n>0:
print(n%10)
recfunction(n//10)
n>0
n<=0
no base cases
n<0​

Answers

Answered by DeepankarGupta
1

Explanation:

15.2 Fill in the code to complete the following function for computing factorial.

def factorial(n):

if n == 0: # Base case

return 1

else:

return _____________________ # Recursive call

A. n * (n - 1)

B. n

C. n * factorial(n - 1)

D. factorial(n - 1) * n

15.3 What are the base cases in the following recursive function?

def xfunction(n):

if n > 0:

print(n % 10)

xfunction(n // 10)

A. n > 0

B. n <= 0

C. no base cases

D. n < 0

15.4 Analyze the following recursive function.

def factorial(n):

return n * factorial(n - 1)

A. Invoking factorial(0) returns 0.

B. Invoking factorial(1) returns 1.

C. Invoking factorial(2) returns 2.

D. Invoking factorial(3) returns 6.

E. The function runs infinitely and causes a StackOverflowError.

15.5 How many times is the factorial function in Listing 15.1 invoked for factorial(5)?

A. 3

B. 4

C. 5

D. 6

Section 15.3 Problem: Computing Fibonacci Numbers

15.6 Which of the following statements are true?

A. The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the preceding two numbers in the series.

B. The Fibonacci series begins with 1 and 1, and each subsequent number is the sum of the preceding two numbers in the series.

C. The Fibonacci series begins with 1 and 2, and each subsequent number is the sum of the preceding two numbers in the series.

D. The Fibonacci series begins with 2 and 3, and each subsequent number is the sum of the preceding two numbers in the series.

15.7 How many times is the fib function in Listing 15.2 invoked for fib(5)?

A. 14

B. 15

C. 25

D. 31

E. 32

15.8 Fill in the code to complete the following function for computing a Fibonacci number.

def fib(index):

if index == 0: # Base case

return 0

elif index == 1: # Base case

return 1

else: # Reduction and recursive calls

return _________________________

A. fib(index - 1)

B. fib(index - 2)

C. fib(index - 1) + fib(index - 2)

D. fib(index - 2) + fib(index - 1)

Section 15.4 Problem Solving Using Recursion

15.9 In the following function, what is the base case?

def xfunction(n):

if n == 1:

return 1

else

return n + xfunction(n - 1)

A. n is 1.

B. n is greater than 1.

C. n is less than 1.

D. no base case.

15.10 What is the return value for xfunction(4) after calling the following function?

def xfunction(n):

if n == 1:

return 1;

else:

return n + xfunction(n - 1)

A. 12

B. 11

C. 10

D. 9

15.11 Fill in the code to complete the following function for checking whether a string is a palindrome.

def isPalindrome(s):

if len(s) <= 1: # Base case

return True

elif _____________________________

return False

else:

return isPalindrome(s.substring(1, len(s) - 1))

A. s[0] != s[-1]: # Base case

B. s[0] != s[len(s)]: # Base case

C. s[1] != s[len(s) - 1]: # Base case

D. s[1] != s[len(s)]: # Base case

15.12 Analyze the following code:

def xfunction(x, length):

print(x[length - 1], end = " ")

xfunction(x, length - 1)

x = [1, 2, 3, 4, 5]

xfunction(x, 5)

A. The program displays 1 2 3 4 6.

B. The program displays 1 2 3 4 5 and then raises an index out of range exception.

C. The program displays 5 4 3 2 1.

D. The program displays 5 4 3 2 1 and then raises an index out of range exception.

Section 15.5 Recursive Helper functions

15.13 Fill in the code to complete the following function for checking whether a string is a palindrome.

def isPalindrome(s):

return isPalindromeHelper(s, 0, len(s) - 1)

def isPalindromeHelper(s, low, high):

if high <= low: # Base case

return True

elif s[low] != s[high]: # Base case

return False

else:

return ____________________________

A. isPalindromeHelper(s)

B. isPalindromeHelper(s, low, high)

C. isPalindromeHelper(s, low + 1, high)

D. isPalindromeHelper(s, low, high - 1)

E. isPalindromeHelper(s, low + 1, high - 1)

15.14 Fill in the code to complete the following function for sorting a list.

def sort(lst):

_________________________ # Sort the entire list

def sortHelper(lst, low, high):

if low < high:

# Find the smallest number and its index in lst[low .. high]

indexOfMin = low

min = lst[low]

for i in range(low + 1, high + 1):

if lst[i] < min:

min = lst[i]

indexOfMin = i

# Swap the smallest in list(low .. high) with list(low)

lst[indexOfMin] = lst[low]

lst[low] = min

# Sort the remaining list(low+1 .. high)

sortHelper(lst, low + 1, high)

A. sortHelper(lst)

B. sortHelper(lst, len(lst) - 1)

C. sortHelper(lst, 0, len(lst) - 1)

D. sortHelper(lst, 0, len(lst) - 2)

I can find this on search engine

Similar questions