Math, asked by harshitadas7853, 9 months ago

What are the cubic formulae used in factorization?

Answers

Answered by meghana0559
0

Answer:

a^3+b^3=(a+b)(a^2-ab+b^2)

Step-by-step explanation:

Answered by SrijanShrivastava
1

For a general Cubic Equation:

a {x}^{3}  + b {x}^{2}  + cx + d = 0

 {x}^{3}  +  \frac{b}{a}  {x}^{2}  +  \frac{c}{a} x +  \frac{d}{a}  = 0

{(x+\frac{b}{3a})}^{3}  + p(x+\frac{b}{3a}) + q = 0

Where,

p =  \frac{3ac -  {b}^{2} }{3 {a}^{2}   }   \\ \:    q =  \frac{2 {b}^{3}  - 9abc + 27 {a}^{2}d }{27 {a}^{3} }

All the Three Roots are:

\\ x _{1} = -\frac{b}{3a}+ \sqrt[3]{ -  \frac{ q}{2}  +  \sqrt{ {(  \frac{q}{2} )}^{2}  + ( \frac{p}{3}) ^{3}  } }  +    \sqrt[3]{ -  \frac{q}{2}  -  \sqrt{ {( \frac{q}{2} )}^{2}  + {( \frac{p}{3}) }^{3}  } }

 \\ x _{2} =  -\frac{b}{3a} + \omega · \sqrt[3]{  -  \frac{ q}{2}  +  \sqrt{ {(  \frac{q}{2} )}^{2}  + ( \frac{p}{3}) ^{3}  } }  +    \omega ^{2} · \sqrt[3]{ -  \frac{q}{2}  -  \sqrt{ {( \frac{q}{2} )}^{2}  + {( \frac{p}{3}) }^{3}  } }

 \\ x _{3} =  -\frac{b}{3a} + \omega^{2} · \sqrt[3]{  -  \frac{ q}{2}  +  \sqrt{ {(  \frac{q}{2} )}^{2}  + ( \frac{p}{3}) ^{3}  } }  +    \omega ·  \sqrt[3]{ -  \frac{q}{2}  -  \sqrt{ {( \frac{q}{2} )}^{2}  + {( \frac{p}{3}) }^{3}  } }

Where, ω is one of the two non-real complex Cube roots of One.

Swipe ahead to see the Full cubic formula →→

Similar questions