Political Science, asked by kholhringstephen7, 5 hours ago

what are the demerits of an election competion?​

Answers

Answered by Anonymous
1

Explanation:

\large\underline{\sf{Solution-}}

Solution−

We have with us to find the value of

\red{\rm :\longmapsto\:\sf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha}}:⟼

cosα

cos

3

β

+

sinα

sin

3

β

can be rewritten as

\rm \: = \:\sf\dfrac{4cos^3\beta}{4cos\alpha}+\dfrac{4sin^3\beta}{4sin\alpha}=

4cosα

4cos

3

β

+

4sinα

4sin

3

β

We know,

\begin{gathered}\red{\rm :\longmapsto\:cos3x = {4cos}^{3}x - 3cosx} \\ \red{\rm :\longmapsto\:it \: means} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \red{\rm :\longmapsto\: {4cos}^{3}x = cos3x + 3cosx}\end{gathered}

:⟼cos3x=4cos

3

x−3cosx

:⟼itmeans

:⟼4cos

3

x=cos3x+3cosx

Also,

\red{\rm :\longmapsto\: {4sin}^{3}x = 3sinx - sin3x}:⟼4sin

3

x=3sinx−sin3x

So, using this, we get

\rm \: = \:\sf\dfrac{cos3 \beta + 3cos \beta }{4cos\alpha}+\dfrac{3sin \beta - sin3 \beta }{4sin\alpha}=

4cosα

cos3β+3cosβ

+

4sinα

3sinβ−sin3β

\rm \: = \:\dfrac{cos3 \beta sin \alpha + 3cos \beta sin \alpha + 3sin \beta cos \alpha - sin3 \beta cos \alpha }{4sin \alpha cos \alpha }=

4sinαcosα

cos3βsinα+3cosβsinα+3sinβcosα−sin3βcosα

\rm \: = \:\dfrac{cos3 \beta sin \alpha- sin3 \beta cos \alpha + 3(cos \beta sin \alpha + sin \beta cos \alpha)}{2(2sin \alpha cos \alpha) }=

2(2sinαcosα)

cos3βsinα−sin3βcosα+3(cosβsinα+sinβcosα)

We know,

\boxed{ \bf{ \: sin(x + y) = sinxcosy + sinycosx}}

sin(x+y)=sinxcosy+sinycosx

and

\boxed{ \bf{ \: sin(x - y) = sinxcosy - sinycosx}}

sin(x−y)=sinxcosy−sinycosx

and

\boxed{ \bf{ \: sin2x = 2sinx \: cosx}}

sin2x=2sinxcosx

So, using these,

\rm \: = \:\dfrac{sin( - 3\beta + \alpha ) + 3sin( \alpha + \beta )}{2sin2 \alpha }=

2sin2α

sin(−3β+α)+3sin(α+β)

\rm \: = \:\dfrac{sin( \alpha - 3\beta ) - sin( \alpha + \beta ) + sin( \alpha + \beta )+ 3sin( \alpha + \beta )}{2sin2 \alpha }=

2sin2α

sin(α−3β)−sin(α+β)+sin(α+β)+3sin(α+β)

\rm \: = \:\dfrac{2cos\bigg[\dfrac{ \alpha - 3\beta + \alpha + \beta }{2} \bigg]sin\bigg[\dfrac{\alpha - 3\beta - \alpha - \beta }{2} \bigg] + 4sin( \alpha + \beta )}{2sin2 \alpha }=

2sin2α

2cos[

2

α−3β+α+β

]sin[

2

α−3β−α−β

]+4sin(α+β)

\rm \: = \:\dfrac{2cos( \alpha - \beta )sin( - 2 \beta ) + 4sin( \alpha + \beta )}{2sin2 \alpha }=

2sin2α

2cos(α−β)sin(−2β)+4sin(α+β)

\purple{\bf \: = \:\dfrac{ - \: 2cos( \alpha - \beta )sin 2 \beta + 4sin( \alpha + \beta )}{2sin2 \alpha } - - - (1)}=

2sin2α

−2cos(α−β)sin2β+4sin(α+β)

−−−(1)

Now, Consider

\rm :\longmapsto\:\sf\dfrac{cos\alpha}{cos\beta}+\dfrac{sin\alpha}{sin\beta}= -1:⟼

cosβ

cosα

+

sinβ

sinα

=−1

\rm :\longmapsto\:\dfrac{cos \alpha sin \beta + sin \alpha cos \beta }{sin \beta cos \beta } = - 1:⟼

sinβcosβ

cosαsinβ+sinαcosβ

=−1

\rm :\longmapsto\:\dfrac{sin( \alpha + \beta) }{sin \beta cos \beta } = - 1:⟼

sinβcosβ

sin(α+β)

=−1

\rm :\longmapsto\:sin( \alpha + \beta ) = - sin \beta cos \beta:⟼sin(α+β)=−sinβcosβ

\rm :\longmapsto\:2sin( \alpha + \beta ) = - 2 sin \beta cos \beta:⟼2sin(α+β)=−2sinβcosβ

\rm :\longmapsto\:2sin( \alpha + \beta ) = - sin2 \beta:⟼2sin(α+β)=−sin2β

So, equation (1), can be rewritten as

\rm \: = \:\dfrac{ 4\: cos( \alpha - \beta )sin( \alpha + \beta ) + 4sin( \alpha + \beta )}{2sin2 \alpha }=

2sin2α

4cos(α−β)sin(α+β)+4sin(α+β)

\rm \: = \:\dfrac{ (\: cos( \alpha - \beta ) + 1)4sin( \alpha + \beta )}{2sin2 \alpha }=

2sin2α

(cos(α−β)+1)4sin(α+β)

\purple{\bf \: = \:\dfrac{ 2(\: cos( \alpha - \beta ) + 1)sin( \alpha + \beta )}{sin2 \alpha } - - (2)}=

sin2α

2(cos(α−β)+1)sin(α+β)

−−(2)

Now, we know that

\rm :\longmapsto\:sin2 \alpha + sin2 \beta = 2sin( \alpha + \beta )cos( \alpha - \beta ):⟼sin2α+sin2β=2sin(α+β)cos(α−β)

\rm :\longmapsto\:sin2 \alpha + sin2 \beta = - sin2 \beta cos( \alpha - \beta ):⟼sin2α+sin2β=−sin2βcos(α−β)

\red{\bigg \{ \because \: - sin2 \beta = 2sin( \alpha + \beta ) \bigg \}}{∵−sin2β=2sin(α+β)}

\rm :\longmapsto\:sin2 \alpha = - sin2 \beta - sin2 \beta cos( \alpha - \beta ):⟼sin2α=−sin2β−sin2βcos(α−β)

\rm :\longmapsto\:sin2 \alpha = - sin2 \beta (1 + cos( \alpha - \beta )):⟼sin2α=−sin2β(1+cos(α−β))

\bf :\longmapsto\:sin2 \alpha = 2 sin( \alpha + \beta) (1 + cos( \alpha - \beta )) - - - (3):⟼sin2α=2sin(α+β)(1+cos(α−β))−−−(3)

\red{\bigg \{ \because \: - sin2 \beta = 2sin( \alpha + \beta ) \bigg \}}{∵−sin2β=2sin(α+β)}

On substituting equation (3) in (2), we get

\rm \: = \:\dfrac{ sin2 \alpha }{sin2 \alpha }=

sin2α

sin2α

\rm \: = \:1=1

Hence,

\red{\bf :\longmapsto\:\bf\dfrac{cos^3\beta}{cos\alpha}+\dfrac{sin^3\beta}{sin\alpha} = 1}:⟼

cosα

cos

3

β

+

sinα

sin

3

β

=1

Answered by raghuhddem
0

Answer:

The demerits of an electoral competition are given below: 

(i) It creates disunity and factionalism in every locality. People often complain of party-politics. 

(ii) Different political parties and leaders often level allegations against one another. Parties and candidates often use dirty tricks to win elections. 

(iii) It is often said that the pressure to win electoral

Similar questions