what are the different rates of solid liquid and gas
Answers
Answered by
1
The three states of matter--solid, liquid, and gas--differ primarily in two respects: a) the distance between the ions or molecules, and b) the extent to which the ions or molecules move. In the solid and liquid states, the ions or molecules are very close, whereas in the gaseous state, these particles are separated by relatively large distances. In the solid state, the ions or molecules do not translate; that is, they move around within the rigid form that constrains them. These particles do, however, vibrate about their positions. In the liquid and solid states, the particles are free to translate.
At this point you are probably wondering why some substances exist in the solid state, whereas others exist in the liquid or gaseous states at room temperature. We are familiar with the three states in which water exists--as ice up to its melting point of 0 °C, as a liquid between 0 and 100 °C, and as a gas (steam) above 100 °C. We also know that any substance can be vaporized if the temperature is high enough. Hence, it appears that there are two factors--the nature of the substance and the temperature--that determine in what state it exists.
Let's deal first with the nature of the substance. There four basic types of solids: a) ionic, b) molecular, c) covalent network, and d) metallic. As we know from our previous discussion of bonding, ionic compounds consist of ions. These ions are packed very efficiently to make the best use of the available space and to maximize the number of ions of opposite charge that surround a particular ion. Figure 43 shows a photo of the sodium chloride lattice (a lattice is just a regular, systematic arrangement of particles). Part (b) of this figure focuses in on a smaller part of the lattice so that we can see a sodium ion (the silver sphere in the center) surrounded by chloride ions.
Please mark me as brainliest
At this point you are probably wondering why some substances exist in the solid state, whereas others exist in the liquid or gaseous states at room temperature. We are familiar with the three states in which water exists--as ice up to its melting point of 0 °C, as a liquid between 0 and 100 °C, and as a gas (steam) above 100 °C. We also know that any substance can be vaporized if the temperature is high enough. Hence, it appears that there are two factors--the nature of the substance and the temperature--that determine in what state it exists.
Let's deal first with the nature of the substance. There four basic types of solids: a) ionic, b) molecular, c) covalent network, and d) metallic. As we know from our previous discussion of bonding, ionic compounds consist of ions. These ions are packed very efficiently to make the best use of the available space and to maximize the number of ions of opposite charge that surround a particular ion. Figure 43 shows a photo of the sodium chloride lattice (a lattice is just a regular, systematic arrangement of particles). Part (b) of this figure focuses in on a smaller part of the lattice so that we can see a sodium ion (the silver sphere in the center) surrounded by chloride ions.
Please mark me as brainliest
Similar questions