Chemistry, asked by infopreetha, 5 hours ago

what are the frequency and wavelength of a photon emitted during a transition from n=6 to n=3

Answers

Answered by tanmay5268
0

Answer:

since n1=5andn1=2, this transition gives rise to a spectral line in the visible region of the balmer series. From equation

ΔE=2.18×10−18J[152−122]

4.58×10−19J

it is an emission energy

the frequency of the photon ( taking energy in terms of magnitude ) is given by

v=ΔEh

4.58×10−19J6.626×10−34Js

6.91×1014Hz

λ=cv=3.0×108ms−16.91×1014Hz=434nm

Explanation:

Answered by VεnusVεronίcα
8

Answer:

The frequency and wavelength of a photon emitted during a transition from n = 6 to n = 3 is 2.87 × 10¹ Hz and 1.045 nm.

 \\

\qquad_____________

 \\

Explanation:

Given that, the photon is having a transition from :

   \sf\dashrightarrow \:  \:  n_{1} = 6

 \sf \dashrightarrow \:  \:  n_{2} = 3

 \:

Firstly, we'll find the energy between the two orbits :

 \sf \dashrightarrow \:  \:  \triangle E = 2.18 \times  {10}^{ - 18}  \: J \:  \bigg \{ \dfrac{1}{ n_{1} ^{2} }  -  \dfrac{1}{ n_{ 2 } ^{2}  }  \bigg \}

 \sf \dashrightarrow \:  \:  \triangle E = 2.18 \times  {10}^{ - 18}  \:J  \:   \bigg \{   \dfrac{1}{ {(6)}^{2} }  -  \dfrac{1}{ {(3)}^{2} } \bigg \}

 \sf \dashrightarrow \:  \:  \triangle E \:  = 2.18 \times  {10}^{ - 18}  \: J \:  \bigg \{ \dfrac{1}{36}  -   \dfrac{1}{9}  \bigg \}

 \sf \dashrightarrow \:  \:  \triangle E = 2.18 \times  {10}^{ - 18}  \: J \:  \bigg \{ \dfrac{1 - 4}{36 }  \bigg  \}

 \sf \dashrightarrow \:   \: \triangle E = 2.18 \times  {10}^{- 18}  \: J \:  \bigg \{  \cancel\cfrac{ - 3}{36} \bigg \}

 \sf \dashrightarrow \:  \:  \triangle  E = 2.18 \times  {10}^{ - 18}  \: J \:  \bigg \{ \dfrac{ - 1}{12}  \bigg \}

 \sf \dashrightarrow \:  \:  \triangle E =  \dfrac{- 2.18\times 10^{-18}}{12}

 \sf \dashrightarrow \:  \triangle E =  0.18 \times10  ^{ - 18}  \: J

 \:

Now, let's calculate the frequency of the photon :

 \sf \dashrightarrow \:  \: v =  \dfrac{ \triangle E}{h}

\sf \dashrightarrow~~ v = \dfrac{0.18\times 10^{-18}}{6.626\times 10^{-34}}

\sf \dashrightarrow~~ v = 0.287\times 10^{-18-(-34)}

\sf \dashrightarrow~~ v = 0.287\times 10^{16}

\pmb{\sf{\dashrightarrow~~ v=2.87\times 10^{17}~Hz}}

 \:

Finally, calculating the wavelength :

\sf \dashrightarrow~~ \lambda =\dfrac{c}{v}

 \sf \dashrightarrow \:  \:  \lambda =  \dfrac{3.0 \times  {10}^{8}m {s}^{ - 1}  }{2.87 \times  {10}^{17}  hz}

 \sf \dashrightarrow \:  \:  \lambda =1.045 \times  {10}^{(8 - 17)}

  \sf \dashrightarrow \:  \:  \lambda = 1.045 \times  {10}^{ - 9} m

\pmb{\sf \dashrightarrow~~ \lambda=1.045 nm}

Similar questions