Math, asked by karansingh301289, 9 months ago

what are the important formula of algebra​

Answers

Answered by Anonymous
0

Answer:

(a+b)= a + b2 + 2ab

(a - b) = a* + b2 - 2ab

a-b= (a + b)(a - b)

a + b = (a + b)-2ab

or

a +b? = (a-b) + 2ab

a + b3 = (a + b)(a- ab + b) = (a + b)3 - 3ab(a+ b)

a-b = (a - b)(a + ab + b) = (a - b) + 3ab(a - b)

2(a + b) = (a + b)2 + (a - b)2

(a+b)2(a - b) = 4ab

a*+b= (a + b)(a - b)[(a+b)2 - 2ab]

(a-b) = (a+b)--4ab

(a+b)2 = (a - b)2 + 4ab

at+b = [(a+b)? - Ab]-2(ab)

(a+b+c) = a +b+c+ + 2ab + 2bc+2ca

(a+b-c)2 = a? +b + c2 + 2ab- 2bc - 2ca

(a-b-c) - a+b + c2 - 2ab + 2bc -2ca

a3+b3 +e3 3abc (a+b+e)(a²+b? +c? - ab- be- ca)

at + ab +b+=(a² + ab + b)(a? - ab + b2

a* + a? +1- (a² + a + 1)(a2-a+1) if a+b+c=0 then a+b 3 +?= 3abc a-be(a + b)(a + b)(a+b)(a-b)

 \\  \\ hope \: it \: help \: you

Answered by callofduty79
0

Answer:

a2 – b2 = (a – b)(a + b)

(a+b)2 = a2 + 2ab + b2

a2 + b2 = (a + b)2 – 2ab

(a – b)2 = a2 – 2ab + b2

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

(a – b – c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca

(a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)

(a – b)3 = a3 – 3a2b + 3ab2 – b3

a3 – b3 = (a – b)(a2 + ab + b2)

a3 + b3 = (a + b)(a2 – ab + b2)

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

a4 – b4 = (a – b)(a + b)(a2 + b2)

a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)

If n is a natural number an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)

If n is even (n = 2k), an + bn = (a – b)(an-1 + an-2b +…+ bn-2a + bn-1)

If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +an-3b2…- bn-2a + bn-1)

(a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….)

Laws of Exponents (am)(an) = am+n ; (ab)m = ambm ; (am)n = amn

Fractional Exponents a0 = 1 ; aman=am−n ; am = 1a−m ; a−m = 1am

Roots of Quadratic Equation

For a quadratic equation ax2 + bx + c where a ≠ 0, the roots will be given by the equation as −b±b2−4ac√2a

Δ = b2 − 4ac is called the discriminant

For real and distinct roots, Δ > 0

For real and coincident roots, Δ = 0

For non-real roots, Δ < 0

If α and β are the two roots of the equation ax2 + bx + c then, α + β = (-b / a) and α × β = (c / a).

If the roots of a quadratic equation are α and β, the equation will be (x − α)(x − β) = 0

Factorials

n! = (1).(2).(3)…..(n − 1).n

n! = n(n − 1)! = n(n − 1)(n − 2)! = ….

0! = 1

(a+b)n=an+nan−1b+n(n−1)2!an−2b2+n(n−1)(n−2)3!an−3b3+….+bn,where,n>1

please mark the BRAINLEST

Similar questions