What are the last two digits of x, if x = (11¹+ 11²+ 11³+ ... + 11⁵⁵)?
Answers
Given :- What are the last two digits of x, if x = (11¹+ 11²+ 11³+ ... + 11⁵⁵) ?
Answer :-
→ x = (11¹+ 11²+ 11³+ ... + 11⁵⁵)
in order to find last two digits we have to find the remainder when x divide by 100 .
so,
→ (x/100) = (11¹+ 11²+ 11³+ ... + 11⁵⁵) /100
→ (x/100) = [(11 + 21 + 31 + 41 _____ 91) + (11 + 21 + 31 + 41 _____ 91) + (11 + 21 + 31 + 41 _____ 91) + (11 + 21 + 31 + 41 _____ 91) + (11 + 21 + 31 + 41 _____ 91) + (11 + 21 + 31 + 41 + 51)]
→ (x/100) = 5(11 + 21 + 31 + 41 _____ 91) + (11 + 21 + 31 + 41 + 51)
→ (x/100) = 5 * 459 + 155
→ (x/100) = 5 * 59 + 55
→ (x/100) = 295 + 55
→ (x/100) = 95 + 55
→ (x/100) = 150 = 50 (Ans.)
Learn more :-
if a nine digit number 260A4B596 is divisible by 33, Then find the number of possible values of A.
https://brainly.in/question/32686002
if n is an integer such that 1nn352 is a six digit number
https://brainly.in/question/26617043