Math, asked by Giridharan6374, 8 months ago

What are the linear factors of the function f(x)=4x3−4x2−11x+6? Select each correct answer. (2x+3)
(2x−3)
(2x+1) (2x−1) (x−2) (x+2)
ps if you could can you please explain it...
Thank you so much I really appreciate it.

Answers

Answered by hukam0685
3

Step-by-step explanation:

Given:

f(x) = 4 {x}^{3}  - 4 {x}^{2}  - 11x + 6 \\

To find:

What are the linear factors of the function

f(x)=4x³−4x²−11x+6

Select each correct answer. (2x+3)

(2x−3)

(2x+1) (2x−1) (x−2) (x+2)

Solution:

If any one of the linear polynomial is a factor of f(x) then by putting the value of x from the factor,converted f(x) into a zero.

Put value of x from every polynomial factor.

Case 1:

2x + 3 = 0 \\  \\ 2x =  - 3 \\  \\ x =  \frac{ - 3}{2}  \\  \\ f \bigg(\frac{ - 3}{2} \bigg)  = 4  \bigg({\frac{ - 3}{2}}\bigg)^{3}  - 4 \bigg({\frac{ - 3}{2}}\bigg)^{2}  - 11\bigg(\frac{ - 3}{2} \bigg)+ 6 \\  \\ f \bigg(\frac{ - 3}{2} \bigg)  =  \frac{ - 27}{2}  - 9 +  \frac{33}{2}  + 6 \\  \\  =  \frac{ - 27 - 18 + 33 + 12}{2}  \\  \\f \bigg(\frac{ - 3}{2} \bigg)    =  \frac{0}{2}  \\  \\ f \bigg(\frac{ - 3}{2} \bigg)    = 0

Thus,

(2x+3) is a factor of polynomial f(x).

Case 2:

2x  -  3 = 0 \\  \\ 2x =  3 \\  \\ x =  \frac{ 3}{2}  \\  \\ f \bigg(\frac{  3}{2} \bigg)  = 4  \bigg({\frac{  3}{2}}\bigg)^{3}  - 4 \bigg({\frac{  3}{2}}\bigg)^{2}  - 11\bigg(\frac{ 3}{2} \bigg)+ 6 \\  \\ f \bigg(\frac{ 3}{2} \bigg)  =  \frac{  27}{2}  - 9 -   \frac{33}{2}  + 6 \\  \\  =  \frac{ 27 - 18  -  33 + 12}{2}  \\  \\f \bigg(\frac{3}{2} \bigg)    =  \frac{ - 12}{2}  \\  \\ \\f \bigg(\frac{3}{2} \bigg)    =  - 6 \\ \\ f \bigg(\frac{3}{2} \bigg)   \neq\:0\\

This is not a factor of f(x).

Case 3:

2x + 1 = 0 \\  \\ 2x =  - 1 \\  \\ x =  \frac{ - 1}{2}  \\  \\ f \bigg(\frac{ - 1}{2} \bigg)  = 4  \bigg({\frac{ - 1}{2}}\bigg)^{3}  - 4 \bigg({\frac{ - 1}{2}}\bigg)^{2}  - 11\bigg(\frac{ - 1}{2} \bigg)+ 6 \\  \\ f \bigg(\frac{ - 1}{2} \bigg)  =  \frac{ - 1}{2}  - 1 +  \frac{11}{2}  + 6 \\  \\  =  \frac{ - 1 - 2 + 11 + 12}{2}  \\  \\f \bigg(\frac{ - 1}{2} \bigg)    =  \frac{20}{2}  \\  \\ f \bigg(\frac{ - 1}{2} \bigg)    = 10\\\\ f \bigg(\frac{ - 1}{2} \bigg)   \neq 0

This is not a factor of f(x).

Case 4:

2x  -  1 = 0 \\  \\ 2x =  1 \\  \\ x =  \frac{ 1}{2}  \\  \\ f \bigg(\frac{ - 1}{2} \bigg)  = 4  \bigg({\frac{  1}{2}}\bigg)^{3}  - 4 \bigg({\frac{ 1}{2}}\bigg)^{2}  - 11\bigg(\frac{ 1}{2} \bigg)+ 6 \\  \\ f \bigg(\frac{ 1}{2} \bigg)  =  \frac{ 1}{2}  - 1 +  \frac{11}{2}  + 6 \\  \\  =  \frac{ 1 - 2  -  11 + 12}{2}  \\  \\f \bigg(\frac{ 1}{2} \bigg)    =  \frac{0}{2}  \\  \\ f \bigg(\frac{ 1}{2} \bigg)    = 0

Thus,

(2x-1) is a factor of f(x).

Case 5:

x - 2 = 0 \\  \\ x = 2 \\  \\ f(2) = 4 {(2)}^{3}  - 4 {(2)}^{2}  - 11(2) + 6 \\  \\ f(2) = 32  - 16  -22+ 6 \\  \\ f(2) = 0 \\  \\

Thus,

(x-2) is a factor of f(x).

Case 6:

x  + 2 = 0 \\  \\ x =  - 2 \\  \\ f(2) = 4 {( - 2)}^{3}  - 4 {( - 2)}^{2}  - 11( - 2) + 6 \\  \\ f( - 2) =  - 32  - 16   + 22+ 6 \\  \\ f( - 2) = 20 \\  \\f( - 2)\:\neq\:0

Thus,

(2x+3),(2x-1) and (x-2) are factors of polynomial f(x).

Hope it helps you.

To learn more on brainly:

1)check whether 7+3x is a factor of 3x³+7x

https://brainly.in/question/1198290

2)Find the value of k for which the following quadratic equation has equal roots x² -2x(1+3k) + 7(3+2k)

https://brainly.in/question/19409677?

Answered by pulakmath007
1

SOLUTION

TO DETERMINE

The linear factors of

 \sf{f(x) = 4 {x}^{3} - 4 {x}^{2}  - 11x + 6 }

EVALUATION

Here the given polynomial is

 \sf{f(x) = 4 {x}^{3} - 4 {x}^{2}  - 11x + 6 }

We now factorise it as below

 \sf{f(x) = 4 {x}^{3} - 4 {x}^{2}  - 11x + 6 }

For x = 2 we have f(2) = 0

∴ ( x - 2 ) is a factor of f(x)

 \sf{f(x) = 4 {x}^{3} - 4 {x}^{2}  - 11x + 6 }

 \sf{= 4 {x}^{3} -8 {x}^{2}   +   4 {x}^{2}  - 8x - 3x + 6 }

 \sf{ = 4 {x}^{2} (x - 2) + 4x(x - 2) - 3(x - 2) }

 \sf{ = (x - 2)(4 {x}^{2}  + 4x - 3)}

 \sf{ = (x - 2) \bigg[4 {x}^{2}  +( 6 - 2)x - 3 \bigg] }

 \sf{ = (x - 2) \bigg[4 {x}^{2}  +6x  - 2x- 3 \bigg] }

 \sf{ = (x - 2) \bigg[2x(2x + 3) - 1(2x + 3) \bigg] }

 \sf{ = (x - 2) \bigg[(2x + 3) (2x  - 1) \bigg] }

 \sf{ = (x - 2) (2x + 3) (2x  - 1)  }

Hence the linear factors of

 \sf{f(x) = 4 {x}^{3} - 4 {x}^{2}  - 11x + 6 } \:  \:  \:  \:  \: are

 \sf{(x - 2) \: , \: (2x + 3) \: , \: (2x - 1)}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The graph of nth order polynomial

cuts x-axis at how many points?

https://brainly.in/question/29731188

2. If 1/2 is a root of the quadratic equation x²-mx-5/4=0 , then the value of m is?

https://brainly.in/question/21062028

Similar questions