what are the maximum and minimum values of 2x3-9x2 +12x+15
Answers
Answered by
0
2x3−9x2−24x+15
dydx=6x2−18x−24
Let us determine the coordinates of the maxima and minima,
When dydx=0,
6x2−18x−24=0
x2−3x−4=0
Factor and solve,
(x−4)(x+1)=0
x=4or−1
When x=4,
y=2(4)3−9(4)2−24(4)+15
y=−97
(4,−97)
When x=−1
y=2(−1)3−9(−1)2−24(−1)+15
y=28
(−1,28)
Now, to determine the nature of these coordinates,
Find d2ydx2,
d2ydx2=12x−18
When x=4,
d2ydx2=12(4)−18
d2ydx2=30>0 ( minima )
When x=−1,
d2ydx2=12(−1)−18
d2ydx2=−30<0 ( maxima )
Therefore,
(4,−97) minima and (−1,28) maxima
Check:
graph{2x^3-9x^2-24x+15 [-20, 20, -120,120]}
Similar questions
English,
3 months ago
Computer Science,
6 months ago
History,
1 year ago
Science,
1 year ago
English,
1 year ago