Math, asked by chaudharyanisha129, 3 months ago

what are the point on the axis of x whose perpendicular distance from the straight line x/a+y/b=1 is a​

Answers

Answered by khashrul
0

Answer:

The points are (a[1 + \sqrt{1 + \frac{a^2}{b^2}}], 0) and (a[1 - \sqrt{1 + \frac{a^2}{b^2}}], 0)

Step-by-step explanation:

Perpendicular distance from any point (x1, y1) to a straight line ax + by + c = 0

is \frac{absolute(ax1 + by1 + c)}{\sqrt{a^2 + b^2} }

Now points on the X axis have co-ordinates (x1,0)

according to the problem:

\frac{absolute(\frac{x1}{a}  + \frac{0}{b}  - 1)}{\sqrt{\frac{1}{a^2}  + \frac{1}{b^2} } } = a

=> \frac{(\frac{x1}{a}  + \frac{0}{b}  - 1)^2}{\frac{1}{a^2}  + \frac{1}{b^2} }  = a^2  [both sides squared]

=> (\frac{x1}{a}  - 1)^2}  = a^2 . ({\frac{1}{a^2} + \frac{1}{b^2}}) = 1 + \frac{a^2}{b^2}

=> \frac{x1}{a}  - 1  = ± \sqrt{1 + \frac{a^2}{b^2}}

=> \frac{x1}{a}   = 1 ± \sqrt{1 + \frac{a^2}{b^2}}

=> x1  = a(1  ± \sqrt{1 + \frac{a^2}{b^2}})

=> x1  = a(1 + \sqrt{1 + \frac{a^2}{b^2}})

or, x1  = a(1 - \sqrt{1 + \frac{a^2}{b^2}})  

∴ The points are (a[1 + \sqrt{1 + \frac{a^2}{b^2}}], 0) and (a[1 - \sqrt{1 + \frac{a^2}{b^2}}], 0)

Similar questions