What are the roots of 12x = 9 + 5x2?
A. `(-6 stackrel(+)(-) isqrt(3))/(10)`
B. `(-6 stackrel(+)(-) isqrt(3))/(5)`
C. `(6 stackrel(+)(-) 3i)/(5)`
D. `(-6 stackrel(+)(-) 3i)/(5)`
Answers
Answered by
0
Answer:
Step-by-step explanation:
Minus 12x both sides
0=5x^2-12x+9
use quadratic formula
for 0=ax^2+bx+c
x= \frac{-b+/- \sqrt{b^2-4ac} }{2a}
given
5x^2-12x+9
a=5
b=-12
c=9
remember: i=√-1
x= \frac{-(-12)+/- \sqrt{(-12)^2-4(5)(9)} }{2(5)}
x= \frac{12+/- \sqrt{144-180} }{10}
x= \frac{12+/- \sqrt{-36} }{10}
x= \frac{12+/- (\sqrt{-1})(\sqrt{36}) }{10}
x= \frac{12+/- i(\sqrt{36}) }{10}
x= \frac{12+/- 6i }{10}
x= \frac{6+/- 3i }{5}
the roots are
x= \frac{6+ 3i }{5} and \frac{6- 3i }{5}
Similar questions