what are the roots of the quadratic equation x²-2x -3=0
Answers
Answered by
0
Step-by-step explanation:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
−
2
−
3
=
0
x^{2}-2x-3=0
x2−2x−3=0
=
1
a={\color{#c92786}{1}}
a=1
=
−
2
b={\color{#e8710a}{-2}}
b=−2
=
−
3
c={\color{#129eaf}{-3}}
c=−3
=
−
(
−
2
)
±
(
−
2
)
2
−
4
⋅
1
(
−
3
)
√
2
⋅
1
x=\frac{-({\color{#e8710a}{-2}}) \pm \sqrt{({\color{#e8710a}{-2}})^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-3}})}}{2 \cdot {\color{#c92786}{1}}}
x=2⋅1−(−2)±(−2)2−4⋅1(−3)
2
Similar questions