Math, asked by iamlall8954, 1 month ago

What are the solutions of the systems? Y = x^2 + 3.9x + 4.4 y= 4.5x -2.8

Answers

Answered by Swarup1998
1

Given equations:

\quad \mathsf{y=x^{2}+3.9x+4.4} . . . (1)

\quad \mathsf{y=4.5x-2.8} . . . (2)

To find: the solutions

Step-by-step explanation:

Using (2), from (1), we get

\quad \mathsf{4.5x-2.8=x^{2}+3.9x+4.4}

\Rightarrow \mathsf{x^{2}+3.9x-4.5x+4.4+2.8=0}

\Rightarrow \mathsf{x^{2}-0.6x+7.2=0}

Using quadratic formula, we get

\quad \mathsf{x=\frac{-(-0.6)\pm \sqrt{(-0.6)^{2}-4\times 1\times 7.2}}{2\times 1}}

\Rightarrow \mathsf{x=\frac{0.6\pm\sqrt{0.36-28.8}}{2}}

\Rightarrow \mathsf{x=\frac{0.6\pm\sqrt{-28.44}}{2}}

\Rightarrow \mathsf{x=\frac{0.6\pm\sqrt{28.44}i}{2}} where \mathsf{i=\sqrt{-1}}

\Rightarrow \mathsf{x=\frac{0.6\pm 6\sqrt{0.79}i}{2}}

\Rightarrow \mathsf{x=0.3\pm 3\sqrt{0.79}i}

Now putting \mathsf{x=0.3\pm 3\sqrt{0.79}i} in (2), we get

\quad \mathsf{y=4.5\times (0.3\pm 3\sqrt{0.79}i)-2.8}

\Rightarrow \mathsf{y=1.35\pm 13.5\sqrt{0.79}i-2.8}

\Rightarrow \mathsf{y=-1.45\pm 13.5\sqrt{0.79}i}

Answer:

Therefore the required solutions are

\mathsf{x=0.3\pm 3\sqrt{0.79}i, y=-1.45\pm 13.5\sqrt{0.79}i}

Similar questions