Math, asked by ayersarianna, 1 year ago

What are the solutions of x^2+6x-6=10

Answers

Answered by charliejaguars2002
7

Answer:

\Large\boxed{\mathsf{X=2, X=-8}}

Step-by-step explanation:

GIVEN:

x²+6x-6=10

TO FIND:

The solutions of x²+6x-6=10.

TO SOLVE:

With quadratic equation.

SOLUTIONS:

First, thing you do is subtract by 10 from both sides.

\displaystyle \mathsf{x^2+6x-6-10=10-10}}}

Solve.

\displaystyle \mathsf{x^2+6x-16=0}

\Large\boxed{\mathsf{QUADRATIC \quad EQUATION}}

\displaystyle \mathsf{AX^2+BX+C=0}

\displaystyle \mathsf{\frac{-b\pm \sqrt{b^2-4ac}}{2a}}

\displaystyle \mathsf{A=1}\\\\\displaystyle \mathsf{B=6}\\\\\displaystyle \mathsf{C=(-16)}\\\\

\displaystyle \mathsf{\frac{-6\pm \sqrt{6^2-4*\:1\left(-16\right)}}{2* \:1}}}}

\displaystyle\mathsf{6^2+4*1*16=\sqrt{100}}}

\displaystyle \mathsf{\frac{-6+\sqrt{100}}{2*\:1}}}

Multiply.

2*1=2

\displaystyle \mathsf{\frac{-6+\sqrt{100}}{2}}}

\displaystyle \mathsf{\sqrt{100}=10^2=10\times10=100=10}}}}

\displaystyle \mathsf{\frac{-6+10}{2}}

Add and subtract.

\displaystyle \mathsf{-6+10=4}

Divide.

\displaystyle \mathsf{4\div2=2}

\Large\boxed{\longrightarrow \mathsf{X=2}}

\displaystyle \mathsf{\frac{-6-\sqrt{6^2-4\cdot \:1\left(-16\right)}}{2\cdot \:1}}}=\boxed{-8}

\Large\boxed{\mathsf{\longrightarrow X=-8}}

In conclusion, the solutions of x²+6x-6=10 is x=2, and x=-8, which is our final answer.

Answered by superalam5000
0

Answer:

Step-by-step explanation:

Similar questions