Hindi, asked by panseriyaumang, 1 year ago

What changes are occurring in our session due to global warming? And for
This what we can do?

Answers

Answered by Thinkab13
1

Answer:

Due to global warming the summer season has become more hotter than the older days and winter season has become shorter

Answered by ImMrGenius
0

Answer:

What is Global Warming?

Global warming is the slow increase in the average temperature of the earth’s atmosphere because an increased amount of the energy (heat) striking the earth from the sun is being trapped in the atmosphere and not radiated out into space.

The earth’s atmosphere has always acted like a greenhouse to capture the sun’s heat, ensuring that the earth has enjoyed temperatures that permitted the emergence of life forms as we know them, including humans.

Without our atmospheric greenhouse the earth would be very cold. Global warming, however, is the equivalent of a greenhouse with high efficiency reflective glass installed the wrong way around.

Ionically, the best evidence of this may come from a terrible cooling event that took place some 1,500 years ago. Two massive volcanic eruptions, one year after another placed so much black dust into the upper atmosphere that little sunlight could penetrate. Temperatures plummeted. Crops failed. People died of starvation and the Black Death started its march. As the dust slowly fell to earth, the sun was again able to warn the world and life returned to normal.

Today, we have the opposite problem. Today, the problem is not that too little sun warmth is reaching the earth, but that too much is being trapped in our atmosphere.

So much heat is being kept inside greenhouse earth that the temperature of the earth is going up faster than at any previous time in history. NASA provides an excellent course module on the science of global warming.

(Source: NASA)

 

(Source: NASA)

(Source: Center for Climate and Energy Solutions)

 

How does Global Warming drive Climate Change?

Heat is energy and when you add energy to any system changes occur.

Because all systems in the global climate system are connected, adding heat energy causes the global climate as a whole to change.

Much of the world is covered with ocean which heats up. When the ocean heats up, more water evaporates into clouds.

Where storms like hurricanes and typhoons are forming, the result is more energy-intensive storms. A warmer atmosphere makes glaciers and mountain snow packs, the Polar ice cap, and the great ice shield jutting off of Antarctica melt raising sea levels.

 

(Source: US Environmental Protection Agency)

Changes in temperature change the great patterns of wind that bring the monsoons in Asia and rain and snow around the world, making drought and unpredictable weather more common.

This is why scientists have stopped focusing just on global warming and now focus on the larger topic of climate change.

Can we do more? It is clear that even if the international community manages to make further progress, it has a long way to go before it has exhausted its current agenda of negotiated restrictions on carbon emissions. It should also be clear that even with unimaginably successful negotiations, restrictions on carbon emissions will not do the job.

To be blunt: there is too much carbon in the atmosphere and existing technology – cars, factories, airplanes, ships, buildings – will continue to emit huge amounts more into the foreseeable future.

The only thing to do is to reduce the amount of atmospheric carbon.

There are many experiments underway to find ways to do this. So far, only a few processes show promise. While different in many ways, these processes are similar in one critical way: they all remove carbon from the atmosphere by converting it into an inert form that can be sequestered permanently, that is, returned to a form where, like the fossil carbon forms, it is truly out of sight, out of mind and out of the atmosphere – forever.

New techniques for doing this are remarkably simple chemically, but the innovations in business modeling to make them work are complex. In Iceland, for example, scientists have demonstrated that CO2 pumped underground into porous basalt formations will quickly turn to stone. (Ten percent of continental land and the entire seabed are basalt; the technology already costs less than one half as much as current (and unreliable) underground sequestration techniques.)

Another technology passes air across a huge surface of flowing alkali bath to capture CO2 so that it can then be converted to pellets. (Unfortunately, because CO2 is just 0.04% of the air, meaningful systems will have to be huge and much more efficient.) In each case, and in those of many other possible technologies, the issues are not scientific, but how to scale production cost-effectively.

Similar questions