Math, asked by nitishkumar5906, 10 months ago

What denominator do we obtain after rationalising the denominator of 4/7root5-5root7

Answers

Answered by Sudhir1188
7

ANSWER:

 \dfrac{2(7 \sqrt{5} + 5 \sqrt{7})  }{35}

GIVEN:

 \dfrac{4}{7 \sqrt{5}  - 5 \sqrt{7} }

TO FIND:

  • Value of above expression.

SOLUTION:

 =  \dfrac{4}{7 \sqrt{5} - 5 \sqrt{7}  }  \\  \\  =  \frac{4}{7 \sqrt{5} - 5 \sqrt{7}  }  \times  \frac{7 \sqrt{5} + 5 \sqrt{7}  }{7 \sqrt{5} + 5 \sqrt{7}  }  \\  \\  =  \frac{4(7 \sqrt{5}  + 5 \sqrt{7}) }{(7 \sqrt{5}) {}^{2}  - ( \sqrt{7}) {}^{2}   }  \\  \\  =  \frac{4(7 \sqrt{5}  + 5 \sqrt{7} )}{245 - 175}  \\  \\  =  \frac{2(7 \sqrt{5} + 5 \sqrt{7} ) }{35}

NOTE:

  • In nationalisation we have to multiply with a number so that the root from the denominator get removed.
  • Here we see that in denominator a identity is used that is (a+b)(a-b)= -b²
  • Some important formulas:
  • (a+b)² = ++2ab
  • (a-b)² = +-2ab
Similar questions