Math, asked by Sahilpanjla6777, 9 months ago

What derivative of sec2x by first principle

Answers

Answered by Ravitejakarra24
4

Step-by-step explanation:

you can understand by seeing the pic

Attachments:
Answered by brokendreams
1

The derivative of sec2x by the first principle is 2 sec2x tan2x.

Step-by-step explanation:

Given: sec2x

To Find: Derivative of sec2x by the first principle

Solution:

  • Finding the derivative of sec2x by the first principle

By using the first principle, the derivative of sec2x is given as,

\Rightarrow \dfrac{d}{dx} (sec(2x)) =  \lim_{h \to 0} \Big[ \dfrac{sec(2(x+h)) -sec(2x) }{h} \Big]

\Rightarrow \dfrac{d}{dx} (sec(2x)) =  \lim_{h \to 0} \dfrac{1}{h}  \Big[ \dfrac{1}{cos(2(x+h))} - \dfrac{1}{cos(2x)} \Big]

\Rightarrow \dfrac{d}{dx} (sec(2x)) =  \lim_{h \to 0} \dfrac{1}{h}  \Big[ \dfrac{ cos(2x) - cos(2(x+h)}{cos(2(x+h))cos(2x)} \Big]

Using the trigonometric identity cosA - cosB = -2 sin (\frac{A+B}{2} )sin (\frac{A-B}{2} ) in the above expression, we get,

\Rightarrow \dfrac{d}{dx} (sec(2x)) =  \lim_{h \to 0} \dfrac{1}{h}  \Big[ \dfrac{ -2 sin(2x+h) sin(-h)}{cos(2(x+h))cos(2x)} \Big]

\Rightarrow \dfrac{d}{dx} (sec(2x)) = 2 \lim_{h \to 0} \Big( \dfrac{ sin(2x+h)}{cos(2(x+h))cos(2x)} \Big) \lim_{h \to 0} \Big( \dfrac{ sin(h)}{h} \Big)

\Rightarrow \dfrac{d}{dx} (sec(2x)) = 2  \Big( \dfrac{ sin(2x+0)}{cos(2(x+0))cos(2x)} \Big) \lim_{h \to 0} \Big( \dfrac{ sin(h)}{h} \Big)

\Rightarrow \dfrac{d}{dx} (sec(2x)) = 2  \Big( \dfrac{1}{cos(2x)} \times  \dfrac{ sin(2x)}{cos(2x)} \Big) (1)

\Rightarrow \dfrac{d}{dx} (sec(2x)) = 2 sec(2x)} tan(2x)

Hence, the derivative of sec2x by the first principle is 2 sec2x tan2x.

Similar questions