Physics, asked by sanju183, 1 year ago

what do u mean by bombarding in nuclear fission?

Answers

Answered by dhruv159
0

The nuclear binding energy curve. The formation of nuclei with masses up to Iron-56 releases energy, while forming those that are heavier requires energy input. This is because the nuclei below Iron-56 have high binding energies, while the heavier ones have lower binding energies, as illustrated above.



The Sun is a main-sequence star, and thus generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen each second.

In nuclear physics, nuclear fusion is a reaction in which two or more atomic nucleicome close enough to form one or more different atomic nuclei and subatomic particles (neutrons or protons). The difference in mass between the reactants and products is manifested as the release of large amounts of energy. This difference in mass arises due to the difference in atomic "binding energy" between the atomic nuclei before and after the reaction. Fusion is the process that powers active or "main sequence" stars, or other high magnitude stars.

A fusion process that produces a nucleus lighter than iron-56 or nickel-62 will generally yield a net energy release. These elements have the smallest mass per nucleon and the largest binding energy per nucleon, respectively. Fusion of light elements toward these releases energy (an exothermicprocess), while a fusion producing nuclei heavier than these elements will result in energy retained by the resulting nucleons, and the resulting reaction is endothermic. The opposite is true for the reverse process, nuclear fission. This means that the lighter elements, such as hydrogen and helium, are in general more fusible; while the heavier elements, such as uranium and plutonium, are more fissionable. The extreme astrophysicalevent of a supernova can produce enough energy to fuse nuclei into elements heavier than iron.

In 1920, Arthur Eddington suggested hydrogen-helium fusion could be the primary source of stellar energy. Quantum tunnelingwas discovered by Friedrich Hund in 1929, and shortly afterwards Robert Atkinson and Fritz Houtermans used the measured masses of light elements to show that large amounts of energy could be released by fusing small nuclei. Building on the early experiments in nuclear transmutation by Ernest Rutherford, laboratory fusion of hydrogen isotopes was accomplished by Mark Oliphant in 1932. In the remainder of that decade, the theory of the main cycle of nuclear fusion in stars were worked out by Hans Bethe. Research into fusion for military purposes began in the early 1940s as part of the Manhattan Project. Fusion was accomplished in 1951 with the Greenhouse Item nuclear test. Nuclear fusion on a large scale in an explosion was first carried out on November 1, 1952, in the Ivy Mike hydrogen bomb test.

Research into developing controlled thermonuclear fusion for civil purposes began in earnest in the 1950s, and it continues to this day.


sanju183: tum net wala copy kar ke paste kar diya
dhruv159: yes
Answered by enemromario
0
 direct high-energy particles or photons against (atoms, nuclei, etc) esp to produce ions or nuclear transformations.
Similar questions