What do you know about flux in chemistry ?
MohammedRahil:
give me brainliest mark
Answers
Answered by
1
In metallurgy, a flux (derived from Latin fluxus meaning “flow”) is a chemicalcleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining. ... The slag is a liquid mixture of ash, flux, and other impurities.
Answered by
0
In metallurgy, a flux (derived from Latin fluxusmeaning “flow”) is a chemical cleaning agent, flowing agent, or purifying agent. Fluxes may have more than one function at a time. They are used in both extractive metallurgy and metal joining.
Some of the earliest known fluxes werecarbonate of soda, potash, charcoal, coke,borax,[1] lime,[2] lead sulfide[3] and certain minerals containing phosphorus. Iron ore was also used as a flux in the smelting of copper. These agents served various functions, the simplest being a reducing agent, which prevented oxides from forming on the surface of the molten metal, while others absorbed impurities into the slag, which could be scraped off the molten metal. As cleaning agents, fluxes facilitate soldering, brazing, andwelding by removing oxidation from the metals to be joined. Common fluxes are:ammonium chloride or rosin for soldering tin;hydrochloric acid and zinc chloride for soldering galvanized iron (and other zincsurfaces); and borax for brazing, braze-welding ferrous metals, and forge welding.
In the process of smelting, inorganic chlorides, fluorides (see fluorite), limestoneand other materials are designated as "fluxes" when added to the contents of a smeltingfurnace or a cupola for the purpose of purging the metal of chemical impurities such as phosphorus, and of rendering slag more liquid at the smelting temperature. The slag is a liquid mixture of ash, flux, and other impurities. This reduction of slag viscosity with temperature, increasing the flow of slag in smelting, is the original origin of the wordflux in metallurgy. Fluxes are also used in foundries for removing impurities from molten nonferrous metals such as aluminium, or for adding desirable trace elements such as titanium.
In high-temperature metal joining processes (welding, brazing and soldering), flux is a substance which is nearly inert at room temperature, but which becomes stronglyreducing at elevated temperatures, preventing oxidation of the base and filler materials. The role of a flux is typically dual: dissolving the oxides already present on the metal surface, which facilitates wetting by molten metal, and acting as an oxygen barrier by coating the hot surface, preventing its oxidation.
For example, tin-lead solder attaches very well to copper, but poorly to the various oxides of copper, which form quickly at soldering temperatures. By preventing the formation of metal oxides, flux enables the solder to adhere to the clean metal surface, rather than forming beads, as it would on an oxidized surface.
In some applications molten flux also serves as a heat-transfer medium, facilitating heating of the joint by the soldering tool or molten solder.
Fluxes for soft soldering are typically of organic nature, though inorganic fluxes, usually based on halogenides and/or acids, are also used in non-electronics applications. Fluxes for brazing operate at significantly higher temperatures and are therefore mostly inorganic; the organic compounds tend to be of supplementary nature, e.g. to make the flux sticky at low temperature so it can be easily applied.
Some of the earliest known fluxes werecarbonate of soda, potash, charcoal, coke,borax,[1] lime,[2] lead sulfide[3] and certain minerals containing phosphorus. Iron ore was also used as a flux in the smelting of copper. These agents served various functions, the simplest being a reducing agent, which prevented oxides from forming on the surface of the molten metal, while others absorbed impurities into the slag, which could be scraped off the molten metal. As cleaning agents, fluxes facilitate soldering, brazing, andwelding by removing oxidation from the metals to be joined. Common fluxes are:ammonium chloride or rosin for soldering tin;hydrochloric acid and zinc chloride for soldering galvanized iron (and other zincsurfaces); and borax for brazing, braze-welding ferrous metals, and forge welding.
In the process of smelting, inorganic chlorides, fluorides (see fluorite), limestoneand other materials are designated as "fluxes" when added to the contents of a smeltingfurnace or a cupola for the purpose of purging the metal of chemical impurities such as phosphorus, and of rendering slag more liquid at the smelting temperature. The slag is a liquid mixture of ash, flux, and other impurities. This reduction of slag viscosity with temperature, increasing the flow of slag in smelting, is the original origin of the wordflux in metallurgy. Fluxes are also used in foundries for removing impurities from molten nonferrous metals such as aluminium, or for adding desirable trace elements such as titanium.
In high-temperature metal joining processes (welding, brazing and soldering), flux is a substance which is nearly inert at room temperature, but which becomes stronglyreducing at elevated temperatures, preventing oxidation of the base and filler materials. The role of a flux is typically dual: dissolving the oxides already present on the metal surface, which facilitates wetting by molten metal, and acting as an oxygen barrier by coating the hot surface, preventing its oxidation.
For example, tin-lead solder attaches very well to copper, but poorly to the various oxides of copper, which form quickly at soldering temperatures. By preventing the formation of metal oxides, flux enables the solder to adhere to the clean metal surface, rather than forming beads, as it would on an oxidized surface.
In some applications molten flux also serves as a heat-transfer medium, facilitating heating of the joint by the soldering tool or molten solder.
Fluxes for soft soldering are typically of organic nature, though inorganic fluxes, usually based on halogenides and/or acids, are also used in non-electronics applications. Fluxes for brazing operate at significantly higher temperatures and are therefore mostly inorganic; the organic compounds tend to be of supplementary nature, e.g. to make the flux sticky at low temperature so it can be easily applied.
Similar questions