what do you mean by line sight of transmission in the microwave about 30-40 words
Answers
Answered by
7
Microwaves are small wavelength radio waves which have frequencies in range of gigahertz (GHz). Due to their high frequency, they have the ability to transmit signals over a long distance without any loss of data. They can carry vast range of frequencies without causing signal overlap or interference.
Hope this clears you doubts. Please post again in case of further queries.
Regards
Hope this clears you doubts. Please post again in case of further queries.
Regards
Answered by
1
heya friend!!☺☺
here's your answer!!☺☺
A line-of-sight microwave link uses highly directional transmitter and receiver antennas to communicate via a narrowly focused radio beam. The transmission path of a line-of-sight microwave link can be established between two land-based antennas, between a land-based antenna and a satellite-based antenna, or between two satellite antennas. Broadband line-of-sight links operate at frequencies between 1 and 25 gigahertz (the centimetre wavelength band) and can have transmission bandwidths approaching 600 megahertz. In the United States, line-of-sight microwave links are used for military communications, studio feeds for broadcast and cable television, and common carrier trunks for inter-urban telephone traffic. A typical long-distance, high-capacity digital microwave radio relay system links two points 2,500 km apart by using a combination of nine terrestrial and satellite repeaters. Each repeater operates at 4 gigahertz, transmitting seven 80-megahertz-bandwidth channels at 200 megabits per second per channel.
The maximum range of land-based line-of-sight systems is limited by the curvature of the Earth. For this reason, a microwave radio repeater with transmitter and receiver dishes mounted on 30-metre (100-foot) towers has a maximum range of approximately 50 km (30 miles), whereas the maximum range will increase to approximately 80 km (50 miles) if the towers are raised to 90 metres (300 feet). Line-of-sight microwave links are subject to severe fading, owing to refraction of the transmitted beam along the propagation path. Under normal conditions the refractive index of the atmosphere decreases with increasing altitude. This means that upper portions of the beam propagate faster, so that the beam is slightly bent toward the Earth, producing transmission ranges that go beyond the geometric horizon. However, temporary atmospheric disturbances can change the refractive index profile, causing the beam to bend differently and, in severe cases, to miss the receiver antenna entirely. For example, a strong negative vapour gradient over a body of water, with vapour concentration increasing closer to the surface, can cause a bending of the beam toward the Earth that is much sharper than the Earth’s curvature—a phenomenon called ducting.
hope it helps you!!☺☺
here's your answer!!☺☺
A line-of-sight microwave link uses highly directional transmitter and receiver antennas to communicate via a narrowly focused radio beam. The transmission path of a line-of-sight microwave link can be established between two land-based antennas, between a land-based antenna and a satellite-based antenna, or between two satellite antennas. Broadband line-of-sight links operate at frequencies between 1 and 25 gigahertz (the centimetre wavelength band) and can have transmission bandwidths approaching 600 megahertz. In the United States, line-of-sight microwave links are used for military communications, studio feeds for broadcast and cable television, and common carrier trunks for inter-urban telephone traffic. A typical long-distance, high-capacity digital microwave radio relay system links two points 2,500 km apart by using a combination of nine terrestrial and satellite repeaters. Each repeater operates at 4 gigahertz, transmitting seven 80-megahertz-bandwidth channels at 200 megabits per second per channel.
The maximum range of land-based line-of-sight systems is limited by the curvature of the Earth. For this reason, a microwave radio repeater with transmitter and receiver dishes mounted on 30-metre (100-foot) towers has a maximum range of approximately 50 km (30 miles), whereas the maximum range will increase to approximately 80 km (50 miles) if the towers are raised to 90 metres (300 feet). Line-of-sight microwave links are subject to severe fading, owing to refraction of the transmitted beam along the propagation path. Under normal conditions the refractive index of the atmosphere decreases with increasing altitude. This means that upper portions of the beam propagate faster, so that the beam is slightly bent toward the Earth, producing transmission ranges that go beyond the geometric horizon. However, temporary atmospheric disturbances can change the refractive index profile, causing the beam to bend differently and, in severe cases, to miss the receiver antenna entirely. For example, a strong negative vapour gradient over a body of water, with vapour concentration increasing closer to the surface, can cause a bending of the beam toward the Earth that is much sharper than the Earth’s curvature—a phenomenon called ducting.
hope it helps you!!☺☺
Similar questions