Physics, asked by shrirambamdiya, 11 days ago

what do you understand by direction of cosines explain it by resolution of vectors in 3D

Answers

Answered by YourHelperAdi
1

Direction Cosines :

Direction cosines are numerical values used to define a vector. These are the cosines of the angle they make with the x,y and z axes.

  • l is a direction cosine with x axis
  • m is a direction cosine with y axis
  • n is a direction cosine with z axis

Example:

Let there be a vector A which makes angle :

\displaystyle \rm  \alpha \: with \: x - axis

\displaystyle \rm  \beta \: with \: y - axis

\displaystyle \rm  \gamma \: with \: z - axis

Then, we define the direction cosines as :

\displaystyle \rm \bull l = cos (\alpha)

\displaystyle \rm \bull m= cos (\beta)

\displaystyle \rm \bull n= cos (\gamma)

Some Properties Of Direction Cosines :

\displaystyle \rm  \bull  {l}^{2}  +  {m}^{2}  +  {n}^{2}  = 1

 \displaystyle \rm   \implies cos {}^{2} ( \alpha) +  cos {}^{2} ( \beta) +  cos {}^{2} (  \gamma) = 1

Proof :

 \displaystyle \rm   \implies cos {}^{2} ( \alpha) +  cos {}^{2} ( \beta) +  cos {}^{2} (  \gamma)

\displaystyle \rm  \implies   {\left(\frac{ |\overrightarrow{Ax}| }{ |\overrightarrow{A}| }\right)}^{2}  +  { \left( \frac{ | \overrightarrow{Ay}| }{ |\overrightarrow{A}| } \right) }^{2}  +   { \left( \frac{ |\overrightarrow{Az}| }{ |\overrightarrow{A}| } \right) }^{2}

\displaystyle \rm  \implies  \frac{{Ax} {}^{2} }{A {}^{2} }  + \frac{{Ay} {}^{2} }{A {}^{2} } + \frac{{Az} {}^{2} }{A {}^{2} }

\displaystyle \rm  \implies  \frac{{Ax} {}^{2}  + {Ay} {}^{2} + {Az} {}^{2}  }{A {}^{2} }

\displaystyle \rm  \implies  \frac{{A} {}^{2} }{A {}^{2} }

\displaystyle \rm  \implies  {l}^{2}  +  {m}^{2}  +  {n}^{2}  = 1

Hence proved

Attachments:
Similar questions