Physics, asked by singhgurpreet81063, 5 months ago

what do your mean by banking of roads? what is its need make a diagram and derive the expression of angle of banking when friction of negligible.​

Answers

Answered by subnikunjvlogs
2

Explanation:

Obtain an expression for the maximum speed with which a vehicle can safely negotiate a curved road banked at an angle θ, considering the friction is negligible. ... Banking of roads refers to the concept that the surface of the road is inclined with the horizontal.

if it help plz sub my channel Nikunj vlogs

Answered by Anonymous
3

Answer:  Banking of roads- The phenomenon of raising the outer edge of road with respect to the inner edge is called banking of roads.

Need of banking of roads- Friction isn't a reliable source of centripetal acceleration. Thus, roads are banked so as to remove the dependency of centripetal acceleration upon the frictional force.

Consider a vehicle/car of mass 'm' moving on a horizontal circular path of radius 'R' over a banked road of inclination θ with horiontal with uniform speed 'V'.

Forces acting on vehicle are:

1. Weight 'Mg' vertically downward

2. Normal reaction 'N'

3. Frictional force 'f' down the inclined plane

N has 2 components: N cos θ acting as vertical component and N sin θ acting as horizontal component along the centre.

f has 2 components: f sin θ acting vertically downwards and f cos θ acting along the centre.

N cos θ = f sin θ + Mg --- (1)

f = μN

N cos θ = μN sin θ + Mg

N (cos θ - μ sin θ) = Mg

N = \dfrac{Mg}{cos \theta - \mu sin \theta}

Also, \: N sin \theta + f cos \theta = \dfrac{MV^2}{R}  --- (2)

N sin \theta + \mu N cos \theta = \dfrac{MV^2}{R}

N (sin \theta + \mu cos \theta) = \dfrac{MV^2}{R}\\\\Mg \dfrac{sin \theta + \mu cos \theta}{cos \theta - \mu sin \theta} = \dfrac{MV^2}{R}\\\\

Solving the equation above, we get,

V = \sqrt {\dfrac{gR(sin \theta + \mu cos \theta}{cos \theta - \mu sin \theta}}

When friction is negligible, μ = 0.

V = \sqrt{\dfrac{gR\: sin \theta}{cos \theta}}

V = \sqrt{gR \: tan \theta}

Squaring both sides, we get,

V² = gR tan θ

tan \: \theta = \dfrac{V^2}{gR}

\boxed{\theta = tan^{-1} \dfrac{V^2}{gR}} is the angle of banking when friction is

negligible.

Attachments:
Similar questions