What does the equation x square -4xy+y square =0 become when the the axes are turned through an angle 45°
Answers
Answered by
3
Step-by-step explanation:
The relation between coordinates
(
x
,
y
)
and
(
x
'
.
y
'
)
can be expressed as
x
=
x
'
cos
θ
−
y
'
sin
θ
and
y
=
x
'
sin
θ
+
y
'
cos
θ
or
x
'
=
x
cos
θ
+
y
sin
θ
and
y
=
−
x
sin
θ
+
y
cos
θ
for this we need to have
θ
given by
cot
2
θ
=
A
−
C
B
In the given case as equation is
x
2
−
4
x
y
+
y
2
+
1
=
0
, we have
A
=
C
=
1
and
B
=
−
4
and hence
cot
2
θ
=
0
i.e.
θ
=
π
4
Hence relation is give by
x
=
x
'
cos
(
π
4
)
−
y
'
sin
(
π
4
)
and
y
=
x
'
sin
(
π
4
)
+
y
'
cos
(
π
4
)
i.e.
x
=
x
'
√
2
−
y
'
√
2
and
y
=
x
'
√
2
+
y
'
√
2
Hence, we get
(
x
'
√
2
−
y
'
√
2
)
2
−
4
(
x
'
√
2
−
y
'
√
2
)
(
x
'
√
2
+
y
'
√
2
)
+
(
x
'
√
2
+
y
'
√
2
)
2
+
1
=
0
or
(
x
'
2
2
+
y
'
2
2
−
x
'
y
'
)
−
4
(
x
'
2
2
−
y
'
2
2
)
+
(
x
'
2
2
+
y
'
2
2
+
x
'
y
'
)
+
1
=
0
or
−
x
'
2
+
3
y
'
2
+
1
=
0
or
x
'
2
−
3
y
'
2
=
1
The two graphs are as follows:
graph{x^2-4xy+y^2+1=0 [-10, 10, -5, 5]}
and
graph{x^2-3y^2=1 [-10, 10, -5, 5]}
Regards..
Similar questions