Math, asked by sriashy03, 1 year ago

what full solution. please help​

Attachments:

Answers

Answered by rishu6845
4

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by DhanyaDA
9

Given

 {x }^{2}  - 4x + 5 = 0 \\

\sf since \: there \: are \: no \: real \: roots ,

\sf x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

here

b=4

a=1

c=5

\sf  x=\dfrac{-(-4)\pm\sqrt{4^2-(4)(5)}}{2(1)}

\sf x=\dfrac{4\pm\sqrt{(4(-1)}}{2}

\sf x=\dfrac{4\pm2i}{2}

 \sf  \boxed{  \alpha = 2 + i } \\ and \\  \sf  \boxed{ \beta = 2 -  i }

Note:. i = -1

 \sf \: now \: we \: are \: asked \: to \: find \\  \dfrac{1}{ {( \alpha + 3) }^{2} } +  \dfrac{1}{ {( \beta  + 3)}^{2} }

  =  > \dfrac{1}{(2 +  i + 3) ^{2} }  +  \dfrac{1}{(2 -  i+ 3) ^{2}  }

 =  >  \dfrac{1}{ {(5 +  i)}^{2} }  +  \dfrac{1}{(5 -  i)  ^{2}  }

 =  >  \dfrac{1}{25 + i^2 + 10 i}  +  \dfrac{1}{25 + i^2 - 10 i}

substituting i^2=-1

 =  >  \dfrac{1}{24 - 10 i}  +  \dfrac{1}{24 + 10 i}

taking LCM

 =  >  \dfrac{24 + 10 i+ 24 - 10 i }{ {24}^{2}  - (10 i )^{2} }

 =  >  \dfrac{48}{576 - 100{i}^2}

 =  >  \dfrac{48}{576 - 100( - 1)}

 =  >  \dfrac{48}{676}

 =  >  \dfrac{12}{169}

Therefore the option is (1)

Similar questions