English, asked by jishabhRishabh8956, 7 months ago

What happened when the tablecloth was raised

Answers

Answered by mrunknown27
2

Answer:

hii dear...in which chapter , class , subject & ncrt or cbse

Answered by Anonymous
0

Answer:

In that demonstration, the tableware is exhibiting Newton's laws of motion.

Newton's first law says that the tableware will remain motionless unless acted upon by an outside force. To set the objects on the table into motion, the horizontal force acting upon them in this case is the frictional force between them and the table cloth.

Newton's second law says the amount of force needed to accelerate the tableware is directly related to the rate of acceleration. When the tablecloth is pulled slowly, the tableware matches its low rate of acceleration and moves along with it. When the cloth is pulled quickly, the tableware needs to accelerate at a greater rate to move along with it; but the force needed to make that happen is greater than the frictional force available an it lags behind. If the cloth is pulled very rapidly, the tableware 'stays put.'

Answered by: Paul Walorski, B.A. Physics, Part-time Physics Instructor

This question touches on one of the most mysterious things in our universe! The simple answer to your question is inertia. In other words, when you pull the table cloth off the table full of dishes the dishes stay put because of inertia. Inertia is the property of matter that describes its resistance to any change in its motion. When you are running and you try to turn you notice that it is harder to turn the faster you run or the bigger you become the harder it is to change direction. These are other examples of inertia. When you are riding in a car and the driver turns a corner, the feeling that you are being pushed into the door or over to the driver is another example of inertia.

But, what exactly, IS this tendency of things to 'want' to stay as they are? Why does all matter have this property? Why does the amount of matter affect the amount of inertia? Did you know that you could measure the mass of an object by its inertia? In fact, the inertial mass of any object exactly equals the gravitational mass of the object. Einstein himself could not explain this relationship!

Explanation:

MARK ME AS A BRAINLEIST

AND FOLLOW ME AND THANKS MY ANSWER PLEASE

Similar questions