Math, asked by 5555522, 11 months ago

what ir the zeros of polynomial x2-2x-3​

Answers

Answered by babushall
2

Step-by-step explanation:

Factoring  x^2-2x-3 

The first term is,  x^2  its coefficient is  1 .

The middle term is,  -2x  its coefficient is  -2 .

The last term, "the constant", is  -3 

Step-1 : Multiply the coefficient of the first term by the constant   1 • -3 = -3 

Step-2 : Find two factors of  -3  whose sum equals the coefficient of the middle term, which is   -2 .

     -3   +   1   =   -2   That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -3  and  1 

                     x2 - 3x + 1x - 3

Step-4 : Add up the first 2 terms, pulling out like factors :

                    x • (x-3)

              Add up the last 2 terms, pulling out common factors :

                     1 • (x-3)

Step-5 : Add up the four terms of step 4 :

                    (x+1)  •  (x-3)

             Which is the desired factorization

x+1=0 or x-3=0

x=-1 or x= +3

Answered by tanmoyvestige
1

Answer

The simple for doing this is

x²-2x-3

=  x²-3x+x-3

=  x(x-3)+1(x-3)

=  (x=3)  (x=-1)

Hence the two zeros of of polynomial x²-2x-3​ are (x=3)  (x=-1)

                                                                                                           

Similar questions