Math, asked by muhammadammaz45, 11 hours ago

what is 8^1/6 times 2^x = 32^1/2

what is the value of x

Answers

Answered by IRobert
1

Hi there ! ♪┌|∵|┘♪

Answer:  \green{  \boxed{ \bf x = 2 +  log_{2}(3) } }

Step-by-step explanation:

 \bf  \frac{ {8}^{1} }{6}  \cdot  {2}^{x}  =  \frac{ {32}^{1} }{2}

 \bf   \frac{8}{6}   \times  {2}^{x}  =   \frac{32}{2}

 \bf  \frac{4}{3}  \times  {2}^{x}  = 16

 \bf  \frac{4 \times  {2}^{x} }{3}  = 16

 \bf  \frac{ {2}^{2}  \times  {2}^{x} }{3}  = 16

 \bf  \frac{ {2}^{(x + 2)} }{3} = 16

 \bf  {2}^{(x + 2)}  = 48

 \bf x + 2 =   log_{2}(48)

 \bf x =  log_{2}(48)  - 2

 \bf x =  log_{2}(16 \times 3)  - 2

 \bf x =  log_{2}(16)  +  log_{2}(3) - 2

 \bf x =  log_{2}({2}^{4} )  +  log_{2}(3)  - 2

 \bf x = 4 +  log_{2}(3)  - 2  \Rightarrow  \red{  \boxed{ \bf x = 2 +  log_{2}(3) } }

Similar questions