What is a square + b square - c square identity??
Answers
Answer:
A²+B²+C²=(A+B+C)²-2AB-2BC-2CA.
Therefore the required identity is a² + b² - c² = ( a + b + c )² - 2( c² + ab + bc + ca ).
Given:
The relation to be found out for: a² + b² - c²
To Find:
The expansion identity of a² + b² - c²
Solution:
The given question can be solved very easily as shown below.
Given that: a² + b² - c²
We know that,
⇒ ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
Manipulating the above equation by subtracting 2b² on both sides,
⇒ ( a + b + c )² - 2c² = a² + b² + c² + 2ab + 2bc + 2ca - 2c²
⇒ ( a + b + c )² - 2c² = a² + b² + c² -2c² + 2ab + 2bc + 2ca
⇒ ( a + b + c )² - 2c² = a² + b² - c² + 2ab + 2bc + 2ca
⇒ a² + b² - c² = ( a + b + c )² - 2c² - ( 2ab + 2bc + 2ca )
⇒ a² + b² - c² = ( a + b + c )² - ( 2c² + 2ab + 2bc + 2ca )
⇒ a² + b² - c² = ( a + b + c )² -2( c² + ab + bc + ca )
Therefore the required identity is a² + b² - c² = ( a + b + c )² - 2( c² + ab + bc + ca ).
#SPJ2