WHAT IS ATMOSPHERE PRESSURE
THIS IS FOR YOU KHUSHI ❤❤❤
Answers
Answer:
Atmospheric pressure, also known as barometric pressure, is the pressure within the atmosphere of Earth. The standard atmosphere is a unit of pressure defined as 101,325 Pa, which is equivalent to 760 mm Hg, 29.9212 inches Hg, or 14.696 psi.
Answer:
Atmospheric pressure, also called barometric pressure, force per unit area exerted by an atmospheric column (that is, the entire body of air above the specified area). Atmospheric pressure can be measured with a mercury barometer (hence the commonly used synonym barometric pressure), which indicates the height of a column of mercury that exactly balances the weight of the column of atmosphere over the barometer. Atmospheric pressure is also measured using an aneroid barometer, in which the sensing element is one or more hollow, partially evacuated, corrugated metal disks supported against collapse by an inside or outside spring; the change in the shape of the disk with changing pressure can be recorded using a pen arm and a clock-driven revolving drum.
Changes In Atmospheric Pressure With Altitude
See all media
Key People:Related Topics:
Learn about atmospheric pressure and its units and methods of measurement
Description of pressure and its measurement.
© Josef Martha—sciencemanconsulting.comSee all videos for this article
Atmospheric pressure is expressed in several different systems of units: millimetres (or inches) of mercury, pounds per square inch (psi), dynes per square centimetre, millibars (mb), standard atmospheres, or kilopascals. Standard sea-level pressure, by definition, equals 760 mm (29.92 inches) of mercury, 14.70 pounds per square inch, 1,013.25 × 103 dynes per square centimetre, 1,013.25 millibars, one standard atmosphere, or 101.325 kilopascals. Variations about these values are quite small; for example, the highest and lowest sea-level pressures ever recorded are 32.01 inches (in the middle of Siberia) and 25.90 inches (in a typhoon in the South Pacific). The small variations in pressure that do exist largely determine the wind.
Near Earth’s surface the pressure decreases with height at a rate of about 3.5 millibars for every 30 metres (100 feet). However, over cold air the decrease in pressure can be much steeper because its density is greater than warmer air. The pressure at 270,000 metres (10−6 mb) is comparable to that in the best man-made vacuum ever attained. At heights above 1,500 to 3,000 metres.
-------《☆MARK PLEASE☆》------