What is boiling???
Answers
Answer:
Boiling is the rapid vaporization of a liquid, which occurs when a liquid is heated to its boiling point, the temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere.
Explanation:
friend plz mark my answer as the brainliest answer
Answer:
Boiling is the rapid vaporization of a liquid, which occurs when a liquid is heated to its boiling point, the temperature at which the vapour pressure of the liquid is equal to the pressure exerted on the liquid by the surrounding atmosphere. There are two main types of boiling: nucleate boiling where small bubbles of vapour form at discrete points, and critical heat flux boiling where the boiling surface is heated above a certain critical temperature and a film of vapor forms on the surface. Transition boiling is an intermediate, unstable form of boiling with elements of both types. The boiling point of water is 100 °C or 212 °F but is lower with the decreased atmospheric pressure found at higher altitudes.
Boiling water is used as a method of making it potable by killing microbes and viruses that may be present. The sensitivity of different micro-organisms to heat varies. But if water is held at 100 °C (212 °F) for one minute, most micro-organisms and viruses are inactivated. Ten minutes at a temperature of 70 °C (158 °F) is also sufficient for most bacteria.
Boiling water is also used in several cooking methods including boiling, steaming and poaching.
Types
Nucleate
Nucleate boiling is characterized by the growth of bubbles or pops on a heated surface, which rises from discrete points on a surface, whose temperature is only slightly above the temperature of the liquid. In general, the number of nucleation sites is increased by an increasing surface temperature.
An irregular surface of the boiling vessel (i.e., increased surface roughness) or additives to the fluid (i.e., surfactants and/or nanoparticles) facilitate nucleate boiling over a broader temperature range[1][2][3], while an exceptionally smooth surface, such as plastic, lends itself to superheating. Under these conditions, a heated liquid may show boiling delay and the temperature may go somewhat above the boiling point without boiling.
Critical heat flux
Critical heat flux (CHF) describes the thermal limit of a phenomenon where a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the efficiency of heat transfer, thus causing localised overheating of the heating surface. As the boiling surface is heated above a critical temperature, a film of vapor forms on the surface. Since this vapor film is much less capable of carrying heat away from the surface, the temperature rises very rapidly beyond this point into the transition boiling regime. The point at which this occurs is dependent on the characteristics of boiling fluid and the heating surface in question.[2]
Transition
Transition boiling may be defined as the unstable boiling, which occurs at surface temperatures between the maximum attainable in nucleate and the minimum attainable in film boiling.
The formation of bubbles in a heated liquid is a complex physical process which often involves cavitation and acoustic effects, such as the broad-spectrum hiss one hears in a kettle not yet heated to the point where bubbles boil to the surface.
Film
Main article: Leidenfrost effect
If a surface heating the liquid is significantly hotter than the liquid then film boiling will occur, where a thin layer of vapor, which has low thermal conductivity, insulates the surface. This condition of a vapor film insulating the surface from the liquid characterizes film boiling.
Physics
The boiling point of an element at a given pressure is a characteristic attribute of the element. This is also true for many simple compounds including water and simple alcohols. Once boiling has started and provided that boiling remains stable and the pressure is constant, the temperature of the boiling liquid remains constant. This attribute led to the adoption of boiling points as the definition of 100°C.
Distillation
Mixtures of volatile liquids have a boiling point specific to that mixture producing vapour with a constant mix of components - the constant boiling mixture. This attribute allows mixtures of liquids to be separated or partly separated by boiling and is best known as a means of separating ethanol from water.
Explanation:
Please mark me as the brainliest if it has helepd you.