What is conservation of energy ? With explaination . No more spams.❎❎
Answers
Answer:
Conservation of energy
- The conservation of energy is a fundamental concept of physics along with the conservation of mass and the conservation of momentum.
- Within some problem domain, the amount of energy remains constant and energy is neither created nor destroyed.
In physics, the term conservation refers to something which doesn't change. This means that the variable in an equation which represents a conserved quantity is constant over time. It has the same value both before and after an event.
There are many conserved quantities in physics. They are often remarkably useful for making predictions in what would otherwise be very complicated situations. In mechanics, there are three fundamental quantities which are conserved. These are energy, momentum and angular momentum.
If you have looked at examples in other articles—for example, the kinetic energy of charging elephants—then it may surprise you that energy is a conserved quantity. After all, energy often changes in collisions. It turns out that there are a couple of key qualifying statements we need to add:
Energy, as we'll be discussing it in this article, refers to the total energy of a system. As objects move around over time, the energy associated with them—e.g., kinetic, gravitational potential, heat—might change forms, but if energy is conserved, then the total will remain the same.
Conservation of energy applies only to isolated systems. A ball rolling across a rough floor will not obey the law of conservation of energy because it is not isolated from the floor. The floor is, in fact, doing work on the ball through friction. However, if we consider the ball and floor together, then conservation of energy will apply. We would normally call this combination the ball-floor system.